CS 598 EVS: Tensor Computations Bilinear Algorithms

Edgar Solomonik

University of Illinois at Urbana-Champaign

Bilinear Problems

- \triangleright A number of basic numerical problems can be thought of as bilinear functions associated with particular order 3 tensors
	- **Imatrix multiplication**
	- I *discrete convolution*
	- I *symmetric tensor contractions*
- **If** These problems admit nontrivial fast *bilinear algorithms*, which correspond to low-rank CP decompositions of the tensors
	- Strassen's $O(n^{\log_2(7)})$ algorithm for matrix multiplication as well as all other *subcubic matrix multiplication*
	- ▶ The discrete Fourier transform (DFT), Toom-Cook, and Winograd algorithms for *convolution are also examples of bilinear algorithms*
- ▶ We will review fast bilinear algorithms for all of these approaches, using 0*-based indexing when discussing convolution*

Bilinear Problems

A bilinear problem for any inputs $\boldsymbol{a} \in \mathbb{R}^n$ and $\boldsymbol{b} \in \mathbb{R}^k$ computes $\boldsymbol{c} \in \mathbb{R}^m$ as defined by a tensor $\boldsymbol{\mathcal{T}} \in \mathbb{R}^{m \times n \times k}$

$$
c_i = \sum_{j,k} t_{ijk} a_j b_k \quad \Leftrightarrow \quad \bm{c} = \bm{f}^{(\bm{\mathcal{T}})}(\bm{a}, \bm{b})
$$

- \triangleright Variants of discrete convolutions (linear convolution, correlation, cyclic convolution) provide simple examples of τ
	- I *Linear convolution*

$$
t_{ijk} = \begin{cases} 1: k+i-j = 0 \\ 0: \text{otherwise} \end{cases} \Rightarrow \text{ } c_i = \sum_{j,k} t_{ijk} a_j b_k = \sum_{j=\max(0,i-n+1)}^{\min(i,n-1)} a_j b_{i-j}
$$

- **In** *Correlation obtained by transposing the first and last mode of the linear convolution tensor*
- \triangleright *Cyclic convolution has* $t_{ijk} = 1$ *if and only if* $k + i j = 0 \pmod{n}$

Bilinear Algorithms

A bilinear algorithm (V. Pan, 1984) $\Lambda=(\boldsymbol{F}^{(A)},\boldsymbol{F}^{(B)},\boldsymbol{F}^{(C)})$ computes

$$
\boldsymbol{c} = \boldsymbol{F}^{(C)}[(\boldsymbol{F}^{(A)T}\boldsymbol{a}) \odot (\boldsymbol{F}^{(B)T}\boldsymbol{b})],
$$

where a and b are inputs and \odot is the Hadamard (pointwise) product.

Bilinear Algorithms as Tensor Factorizations

 \triangleright A bilinear algorithm corresponds to a CP tensor decomposition

$$
c_i = \sum_{r=1}^{R} f_{ir}^{(C)} \left(\sum_{j} f_{jr}^{(A)} a_j \right) \left(\sum_{k} f_{kr}^{(B)} b_k \right)
$$

=
$$
\sum_{j} \sum_{k} \left(\sum_{r=1}^{R} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)} \right) a_j b_k
$$

=
$$
\sum_{j} \sum_{k} t_{ijk} a_j b_k \quad \text{where} \quad t_{ijk} = \sum_{r=1}^{R} f_{ir}^{(C)} f_{jr}^{(A)} f_{kr}^{(B)}
$$

For multiplication of $n \times n$ matrices, we can define a *matrix multiplication tensor* and consider algorithms with various bilinear rank

- \blacktriangleright **T** is $n^2 \times n^2 \times n^2$
- \blacktriangleright *Classical algorithm has rank* $R = n^3$
- **►** Strassen's algorithm has rank $R \approx n^{\log_2(7)}$

Strassen's Algorithm

Strassen's algorithm
$$
\begin{bmatrix} C_{11} & C_{12} \ C_{21} & C_{22} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \ A_{21} & A_{22} \end{bmatrix} \cdot \begin{bmatrix} B_{11} & B_{12} \ B_{21} & B_{22} \end{bmatrix}
$$

\n $M_1 = (A_{11} + A_{22}) \cdot (B_{11} + B_{22})$
\n $M_2 = (A_{21} + A_{22}) \cdot B_{11}$
\n $M_3 = A_{11} \cdot (B_{12} - B_{22})$
\n $M_4 = A_{22} \cdot (B_{21} - B_{11})$
\n $M_5 = (A_{11} + A_{12}) \cdot B_{22}$
\n $M_6 = (A_{21} - A_{11}) \cdot (B_{11} + B_{12})$
\n $M_7 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$
\n $M_8 = A_{22} \cdot (B_{21} - B_{22})$
\n $M_9 = (A_{12} - A_{22}) \cdot (B_{21} + B_{22})$

By performing the nested calls recursively, Strassen's algorithm achieves cost,

$$
T(n) = 7T(n/2) + O(n^2) = O(7^{\log_2 n}) = O(n^{\log_2 7})
$$

Fast Bilinear Algorithms for Convolution

- \blacktriangleright Linear convolution corresponds to polynomial multiplication
	- \triangleright Let a and b be coefficients of degree $n 1$ polynomial p and degree $k 1$ *polynomial* q *then*

$$
(p \cdot q)(x) = \sum_{i=0}^{n+k-1} c_i x^i \quad \text{where} \quad c_i = \sum_{j=\max(0,i-n+1)}^{\min(i,n-1)} a_j b_{i-j}
$$

- **If** *This view motivates algorithms based on polynomial interpolation*
- In The *Toom-Cook* convolution algorithm computes the coefficients of $p \cdot q$ by computing $(p \cdot q)(x_i)$ for $i \in \{1, \ldots, n+k-1\}$ and interpolates
	- $▶$ *Let* V_r *be a* $(n + k 1)$ *-by-r Vandermonde matrix based on the nodes* x *, so that* $V_n a = [p(x_1), \cdots, p(x_{n+k-1})]^T$, etc.
	- ▶ Then to evaluate p and q at x and interpolate, we compute

$$
\boldsymbol{c} = \boldsymbol{V}_{n+k-1}^{-1}((\boldsymbol{V}_n \boldsymbol{a}) \odot (\boldsymbol{V}_k \boldsymbol{b}))
$$

which is a bilinear algorithm

Toom-Cook Convolution and the Fourier Transform

- \triangleright Vandermonde matrices are ill-conditioned with real nodes, but can be perfectly conditioned with complex nodes
	- ▶ The condition number of a Vandermonde matrix with real nodes is exponential *in its dimension*
	- ▶ Choosing the nodes x to be the complex roots of unity gives the discrete Fourier $\emph{transform (DFT) matrix }$ $\bm{D}^{(n)},$ $d^{(n)}_{jk} = \omega_n^{jk}$ where $\omega_n = e^{2i\pi/n}$
	- ▶ *Modulo normalization DFT matrix is orthogonal and symmetric (not Hermitian)*
- ▶ The *fast Fourier transform (FFT)* can be used to perform products with the DFT matrix in $O(n\log n)$ time *Taking* $\tilde{\bm{D}}^{(n)}$ *to be the* $n_1 \times n_2$ *(for* $n = n_1 n_2$ *) leadina minor of* D_n *we can compute* $y = D^{(n)}x$ *via the split-radix-* n_1 *FFT,*

$$
y_k = \sum_{i=0}^{n-1} x_i \omega_n^{ik} = \sum_{i=0}^{n/2-1} x_{2i} \omega_{n/2}^{ik} + \omega_n^k \sum_{i=0}^{n/2-1} x_{2i+1} \omega_{n/2}^{ik}
$$

$$
y_{(kn_1+t)} = \sum_{s=0}^{n_1-1} \omega_{n_1}^{st} \left[\omega_n^{sk} \sum_{i=0}^{n_2-1} x_{(in_1+s)} \omega_{n_2}^{ik} \right] \Leftrightarrow Y = \left([\tilde{D}^{(n)} \odot (\mathbf{D}^{(n_2)} \mathbf{A})] \mathbf{D}^{(n_1)} \right)^T
$$

Cyclic Convolution via DFT

- ► For linear convolution $\boldsymbol{D}^{(n+k-1)}$ is used, for cyclic convolution $\boldsymbol{D}^{(n)}$ suffices
	- ► Expanding the bilinear algorithm, $\bm{y} = \bm{D}^{(n)^{-1}}((\bm{D}^{(n)}\bm{f})\odot(\bm{D}^{(n)}\bm{g})),$ we obtain

$$
y_k = \frac{1}{n} \sum_{i=0}^{n-1} \omega_{(n)}^{-ki} \left(\sum_{j=0}^{n-1} \omega_{(n)}^{ij} f_j \right) \left(\sum_{t=0}^{n-1} \omega_{(n)}^{it} g_t \right) = \frac{1}{n} \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{t=0}^{n-1} \omega_{(n)}^{(j+t-k)i} f_j g_t
$$

 $▶$ It suffices to observe that for any fixed $u = j + t - k \neq 0$ or $\neq n$, the outer *summation yields a zero result, since the geometric sum simplifies to*

$$
\sum_{i=0}^{n-1} \omega_{(n)}^{ui} = (1 - (\omega_{(n)}^u)^n) / (1 - \omega_{(n)}^u) = 0
$$

- \triangleright The DFT also arises in the eigendecomposition of a circulant matrix
	- **If** *The cyclic convolution is defined by the matrix-vector product* $y = C_{(a)}b$ *where*

$$
\mathbf{C}_{\langle \mathbf{a} \rangle} = \begin{bmatrix} a_0 & \cdots & a_1 \\ \vdots & \ddots & \vdots \\ a_{n-1} & \cdots & a_0 \end{bmatrix}
$$

 \blacktriangleright The eigenvalue decomposition of this matrix is $\bm{C_{(a)}} = \bm{D^{(n)}}^{-1} \, \mathrm{diag}(\bm{D^{(n)}} \bm{a}) \bm{D^{(n)}}$

Winograd's Algorithm for Convolution

- \triangleright The DFT/FFT requires complex arithmetic, motivating alternatives such as the more general Winograd family of algorithms
	- In Winograd's convolution algorithm, the remainder of the product $v = pq$ is *computed using* k *distinct polynomial divisors,* m(i) *, whose product is the polynomial* M with $deg(M) > deg(v)$
	- \blacktriangleright The k polynomial divisors, $m^{(1)}, m^{(2)}, \cdots, m^{(k)}$ must be coprime
	- From the k remainders, $u^{(i)} = pq \mod m^{(i)}$ the remainder $v = pq \mod M$ is *recovered via the Chinese remainder theorem*
	- ▶ The theorem leverages Bézout's identity, which states that there exist polynomials $n^{(i)}$ and $N^{(i)}$ such that, for $M^{(i)} = M/m^{(i)},$

 $M^{(i)}N^{(i)} + m^{(i)}n^{(i)} = 1$

which allow us to construct v

$$
v = \Big(\sum_{i=1}^k u^{(i)}M^{(i)}N^{(i)}\Big) \bmod M
$$

▶ *Toom-Cook algorithms are special cases of Winograd's convolution algorithm,* where the polynomial divisors are $m^{(i)}(x) = x - \chi_i$, where χ_i are nodes

- \triangleright Winograd's convolution algorithm can be written as a bilinear algorithm by defining appropriate linear transformations
	- **I** Linear convolution corresponds to a product with a Toeplitz matrix, $c = T_{(a,k)}b$ where $\bm{T}_{\langle \bm{a}, k \rangle} \in \mathbb{R}^{n+k-1 \times k}$ is

$$
T_{\langle a,k \rangle} = \begin{bmatrix} a_0 \\ \vdots & \ddots & \\ a_{n-1} & & a_0 \\ & & \ddots & \vdots \\ & & & a_{n-1} \end{bmatrix}
$$

 \blacktriangleright Let $\bm{X}_{\langle m,d\rangle}\in\mathbb{C}^{\textit{deg}(m)\times(d+1)}$ be a matrix that computes the coefficients of $\rho=p$ $p(\text{mod } m)$ when multiplied by coefficients of degree d polynomial p, $p = X_{(m,d)}p$

$$
\boldsymbol{X}_{\langle m,d\rangle}=\begin{bmatrix}\boldsymbol{I} & -\boldsymbol{L}\boldsymbol{U}^{-1}\end{bmatrix}
$$

where **I** is an identity matrix of dimension deg (m) , **L** contains the top deg (m) *rows of* $T_{\langle \bm{m},d-deg(m)+1\rangle}$ *, and* \bm{U} *contains the bottom* $d+1$ *rows of* $T_{\langle m,d-deq(m)+1\rangle}$

 \blacktriangleright Given an operator $\bm{X}_{\langle m,d\rangle}\in\mathbb{C}^{\textsf{deg}(m)\times(d+1)}$ to compute coefficients of $\rho=p$ $(mod m)$, we can efficiently compute

 $pq \mod m = (p \mod m)(q \mod m) \mod m$, $\boldsymbol{X}_{\langle m, \mathsf{deg}(p)+\mathsf{deg}(q)-1\rangle}(\boldsymbol{p}\ast\boldsymbol{q}) = \boldsymbol{X}_{\langle m,2\mathsf{deg}(m)-1\rangle} \big((\boldsymbol{X}_{\langle m, \mathsf{deg}(p)\rangle}\boldsymbol{p})\ast (\boldsymbol{X}_{\langle m, \mathsf{deg}(q)\rangle}\boldsymbol{q})\big)$

Further, given a bilinear algorithm (A, B, C) to compute linear convolution of *two* m*-dimensional vectors, we can obtain a bilinear algorithm* $(\bm{X}_{\langle m,deg(p)\rangle}^T\bm{A},\bm{X}_{\langle m,deg(q)\rangle}^T\bm{B},\bm{X}_{\langle m,2deg(m)-1\rangle} \bm{C})$ to compute $\rho=pq \bmod m$, since

$$
\boldsymbol{\rho} = \boldsymbol{X}_{\langle m, 2deg(m)-1 \rangle} \boldsymbol{C}\big((\boldsymbol{A}^T\boldsymbol{X}_{\langle m, deg(p) \rangle} \boldsymbol{p}) \odot (\boldsymbol{B}^T\boldsymbol{X}_{\langle m, deg(q) \rangle} \boldsymbol{q})\big).
$$

- \triangleright Winograd's convolution algorithm effectively merges smaller bilinear algorithms for linear convolution
	- **►** Given $M = \prod_{i=1}^{k} m^{(i)}$ where $deg(M) = n + r 1$ and $m^{(1)}, \cdots, m^{(k)}$ are $\textit{coprime, as well as } (\pmb{A}^{(i)},\pmb{B}^{(i)},\pmb{C}^{(i)}) \textit{ for } i \in \{1,\dots,k\}, \textit{ where } (\pmb{A}^{(i)},\pmb{B}^{(i)},\pmb{C}^{(i)}) \textit{ is }$ a bilinear algorithm for linear convolution of vectors of dimension deg $(m^{(i)})$
	- I *Winograd's convolution algorithm yields a bilinear algorithm* (A, B, C) *for computing linear convolution with vectors of dimension* r *and* n*, where*

$$
A = \begin{bmatrix} X_{\langle m^{(1)},r-1 \rangle}^T A^{(1)} & \cdots & X_{\langle m^{(k)},r-1 \rangle}^T A^{(k)} \end{bmatrix},
$$

\n
$$
B = \begin{bmatrix} X_{\langle m^{(1)},n-1 \rangle}^T B^{(1)} & \cdots & X_{\langle m^{(k)},n-1 \rangle}^T B^{(k)} \end{bmatrix},
$$
 and
\n
$$
C = \begin{bmatrix} \tilde{C}^{(1)} & \cdots & \tilde{C}^{(k)} \end{bmatrix}
$$

where $\tilde{C}^{(i)} = X_{(M, deg(M) + deg(m^{(i)}) - 2)}T_{(e^{(i)}, deg(m^{(i)}))}X_{(m^{(i)}, 2deg(m^{(i)}) - 1)}C^{(i)}$ and $e^{(i)}$ are coefficients of polynomial $e^{(i)} = M^{(i)} N^{(i)} \bmod M$.

- A missing piece of the above formulation is how to realize Bézout's identity to compute $N^{(i)}$ and $e^{(i)}$
	- \blacktriangleright $e^{(i)} = M^{(i)} N^{(i)} \bmod M$ so it suffices to compute $n^{(i)}$ and $N^{(i)}$ then apply *previously mentioned linear transformations*
	- ▶ The extended Euclidian algorithm can be used for this task, or one can solve a *linear system*
	- \blacktriangleright The coefficients of polynomials \hat{N} and \hat{n} satisfying $\hat{M}\hat{N}+\hat{m}\hat{n}=1$ for coprime \hat{M} *and* m̂ *are*

$$
\begin{bmatrix} \hat{N} \\ \hat{n} \end{bmatrix} = \begin{bmatrix} \boldsymbol{T}_{\langle \hat{M},\textit{deg}(\hat{m})-1 \rangle} & \boldsymbol{T}_{\langle \hat{\boldsymbol{m}},\textit{deg}(\hat{M})-1 \rangle} \end{bmatrix}^{-1} \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}
$$

Nested Bilinear Algorithms for Convolution

- \triangleright 2D convolution is equivalent to nested 1D convolution
	- ▶ Given $\mathbf{F} \in \mathbb{R}^{r \times r}$ and $\mathbf{G} \in \mathbb{R}^{n \times n}$, the 2D linear convolution $\mathbf{Y} = \mathbf{F} * \mathbf{G}$ with Y ∈ R (n+r−1)×(n+r−1) *gives*

$$
y_{ab} = \sum_{i=\max(0,a-n+1)}^{\min(a,r-1)} \sum_{j=\max(0,b-n+1)}^{\min(b,r-1)} f_{ij}g_{a-i,b-j}
$$

- I *2D bilinear problem is defined by tensor* T (2D) = T ⊗ T *where* ⊗ *is the natural generalization of Kronecker product to tensors*
- \triangleright 1D convolution can be reduced to 2D convolution with some work
	- For linear convolution, with vectors of dimension $n = st$ can reduce to $s \times t$ 2D *convolution to obtain rank* (2s − 1)(2t − 1) *bilinear algorithm via overlap-add technique, which computes partial sums of the result of the 2D convolution*
	- **For cyclic convolution, Agarwal-Cooley algorithm uses the Chinese remainder** *theorem for integers to decouple dimension* $n = st$ *convolution to* $s \times t$ 2D cyclic *convolution via permutations*
- \triangleright For more details on the above derivations and a broader survey of convolution algorithms, see <https://arxiv.org/abs/1910.13367>

Symmetric Tensor Contractions

- \triangleright Bilinear algorithms can also be used to accelerate tensor contractions for tensors with symmetry
	- **P** Recall a symmetric tensor is defined by e.g., $t_{ijk} = t_{ikj} = t_{kij} = t_{jki} = t_{jik} = t_{kji}$
	- **If** *Tensors can also have skew-symmetry (also known as antisymmetry,***)** *permutations have* +/− *signs), partial symmetry (only some modes are permutable), or group symmetry (blocks are zero if indices satisfy modular equation)*
	- ▶ The simplest example of a symmetric tensor contraction is

 $y = Ax$ where $A = A^T$

it is not obvious how to leverage symmetry to reduce cost of this contraction

- \triangleright Bilinear algorithms for symmetric tensor contractions exist with lower rank than their nonsymmetric counterparts
	- **If** Symmetric matrix-vector product can be done with $n(n + 1)/2$ multiplications
	- **In** *Cost of contractions of partially symmetric tensors reduced via this technique*

Symmetric Matrix Vector Product

Consider computing $c = Ab$ with $A = A^T$

- ▶ Typically requires n^2 multiplications since $a_{ij}b_j \neq a_{ji}b_i$ and $n^2 n$ additions
- **Instead can compute**

$$
v_i = \sum_{j=1}^{i-1} u_{ij} + \sum_{j=i+1}^{n} u_{ji} \quad \text{where} \quad u_{ij} = a_{ij} (b_i + b_j)
$$

using $n(n-1)/2$ *multiplications (since we only need* u_{ij} *for* $i > j$) and about 3n ²/2 *additions, then*

$$
c_i = (2a_{ii} - \sum_{j=1}^{n} a_{ij})b_i + v_i
$$

using n *more multiplications and* n ² *additions*

- I *Beneficial when multiplying elements of* A *and* b *costs more than addition*
- \blacktriangleright This technique yields a bilinear algorithm with rank $n(n+1)/2$

Partially-Symmetric Tensor Times Matrix (TTM)

 \triangleright Can use symmetric mat-vec algorithm to accelerate TTM with partially symmetric tensor from $2n^4$ operations to $(3/2)n^4 + O(n^3)$

► Given $A \in \mathbb{R}^{n \times n \times n}$ with symmetry $a_{ijk} = a_{jik}$ and $B \in \mathbb{R}^{n \times n}$, we compute

$$
c_{ikl} = \sum_{j} a_{ijk} b_{jl}
$$

▶ We can think of this as a set of symmetric matrix-vector products

$$
\boldsymbol{c}^{(k,l)} = \boldsymbol{A}^{(k)} \boldsymbol{b}^{(l)}
$$

and apply the fast bilinear algorithm

$$
v_{ikl} = \sum_{j=1}^{i-1} u_{ijkl} + \sum_{j=i+1}^{n} u_{ijkl} \text{ where } u_{ijkl} = a_{ijk} (b_{il} + b_{jl})
$$

$$
c_{ikl} = (2a_{iik} - \sum_{j=1}^{n} a_{ijk})b_{il} + v_{ikl}
$$

using about $n^4/2$ multiplications and $n^4 + O(n^3)$ additions (need only n^3 distinct sums of elements of \boldsymbol{B}) to compute $\boldsymbol{\mathcal{V}}$, then $O(n^3)$ operations to get $\boldsymbol{\mathcal{C}}$ from $\boldsymbol{\mathcal{V}}$

Computing Symmetric Matrices

- \triangleright Output symmetry can also be used to reduced cost, for example when computing a symmetrized outer product $C = ab^T + ba^T$
	- \blacktriangleright $\bm{C} = \bm{C}^T$ so suffices to compute c_{ij} for $i \geq j,$ $c_{ij} = a_i b_j + a_j b_i$
	- ▶ *To reduce number of products by a factor of 2, can instead compute*

$$
c_{ij} = (a_i + a_j)(b_i + b_j) - v_i - v_j \quad \text{where} \quad v_i = a_i b_i
$$

- \triangleright To symmetrize product of two symmetric matrices, can compute anticommutator, $C = AB + BA$
	- \blacktriangleright Each matrix can be represented with $n(n+1)/2$ elements, but products all n^3 products $a_{ik}b_{kj}$ are distinct (so typically cost is $2n^3)$
	- Cost can be reduced to $n^3/6 + O(n^2)$ products by amortizing terms in

$$
c_{ij} = \sum_{k} (a_{ij} + a_{ik} + a_{jk})(b_{ij} + b_{ik} + b_{jk}) - na_{ij}b_{ij}
$$

$$
- \left(\sum_{k} a_{ik} + a_{jk}\right)b_{ij} - a_{ij}\left(\sum_{k} b_{ik} + b_{jk}\right) - \sum_{k} a_{ik}b_{ik} - \sum_{k} a_{jk}b_{jk}
$$

General Symmetric Tensor Contractions

 \blacktriangleright We can now consider the cost of a symmetrized contraction over v indices of symmetric tensors \mathcal{A} (of order $s + v$) and \mathcal{B} (of order $v + t$)

$$
c_{i'_1...i'_s,j'_1...j'_t} = \sum_{\{i_1...i_s,j_1...j_t\} \in \Pi(i'_1...i'_s,j'_1...j'_t)} \sum_{k_1...k_v} a_{i_1...i_s,k_1...k_v} b_{k_1...k_v,j_1...j_t}
$$

where Π *gives all distinct partitions of the* s + t *indices into two subsets of size* s *and* t*, e.g.,*

$$
\Pi(i_1, j_1 j_2) = \{\{i_1, j_1 j_2\}, \{j_1, i_1 j_2\}, \{j_2, i_1 j_1\}\}\
$$

\blacktriangleright Such tensor contractions can be done using $n^{s+t+v}/(s+t+v)!+O(n^{s+t+v-1})$ products

- I *General algorithm looks similar to anticommutator matrix product*
- **In After multiplying subsets of operands, unneeded terms are all computable with** O(n s+t+v−1) *products*
- **If** *These approaches correspond to bilinear algorithms of this rank*

Hankel Matrix Vector Product

 \triangleright A Hankel matrix is a reflection of a Toeplitz matrix (which can similarly be used to compute convolution),

$$
H = \begin{bmatrix} h_1 & h_2 & h_3 & \cdots \\ h_2 & h_3 & & \ddots \\ \vdots & & & \ddots \\ \vdots & & & \end{bmatrix}
$$

▶ Hankel matrices are symmetric across blocks and Hankel within blocks

$$
\boldsymbol{H} = \begin{bmatrix} \boldsymbol{H}_{1} & \boldsymbol{H}_{2} \\ \boldsymbol{H}_{2} & \boldsymbol{H}_{1} \end{bmatrix}
$$

but not vice versa, i.e., some elements in H_1 *must be the same as in* H_2

 \triangleright Can compute Hankel mat-vec by applying symmetric mat-vec recursively

- For $n = 2$ fast bilinear algorithm requires $n(n + 1)/2 = 3$ products
- \blacktriangleright Additions of Hankel matrices and vector entries can be done in $O(n)$ time, so

$$
T(n) = 3T(n/2) + O(n) = O(n^{\log_2(3)})
$$

▶ This complexity is as good as the recursive application of Toom-Cook, but O(n log n) *can be achieved via FFT or other techniques*

Group Symmetry

- \blacktriangleright Tensors arising in physical simulations often have group structure that reflects conservation laws
	- ▶ Abelian group symmetries can be mapped to cyclic group, which can be used to *define a block-sparse form of the tensors (here represented using extra modes)*
	- ▶ *A particularly common/important contraction with cyclic group symmetry is*

$$
w_{aA,bB,iI,jJ} = \sum_{k,K,l,L} u_{aA,bB,kK,lL} v_{kK,lL,iI,jJ}.
$$

where for some group size G*, we have symmetries, e.g.,*

$$
w_{aA,bB,iI,jJ} \neq 0 \text{ if } A + B - I - J \equiv 0 \pmod{G},
$$

\n
$$
u_{aA,bB,kK,lL} \neq 0 \text{ if } A + B + K + L \equiv 0 \pmod{G},
$$

\n
$$
v_{kK,lL,iI,jJ} \neq 0 \text{ if } K + L - I - J \equiv 0 \pmod{G}.
$$

I *We can write each of these tensors using a reduced form and an irrep map,*

$$
w_{aA,bB,iI,jJ} = r_{aA,bB,iI,j}^{(W)} m_{ABIJ}
$$

where $m_{ABIJ} = 1$ if $A + B - I - J \equiv 0 \pmod{G}$ and $m_{ABIJ} = 0$ otherwise

Fast Algorithms for Contraction with Group Symmetry

- \triangleright The irrep map tensor describes the cyclic group and has a lot of structure
	- **From definition,** $m_{ABIJ} = 1$ if $A + B I J \equiv 0 \pmod{G}$ and $m_{ABIJ} = 0$ o *therwise, we see there are* $O(G^3)$ *nonzeros*
	- ▶ No matter the order of M or the ordering of indices, it will have a tensor train *decomposition of rank* G*, in particular,*

$$
m_{ABIJ}=m^{(1)}_{ABQ}m^{(2)}_{QIJ}\quad \text{where}\quad m^{(1)}_{ABQ}=1\quad \text{iff}\quad A+B\equiv Q\pmod{G},\quad \text{etc.,}
$$

▶ We can then also define a reduced form relative to an auxiliary index in such a *decomposition, e.g.,*

$$
w_{aA,bB,iI,jJ}=\sum_{Q}r_{aA,bB,iQ,j}^{(W)}m_{ABQ}^{(1)}m_{QIJ}^{(2)}
$$

• By defining consistent reduced forms using auxiliary indices, we can efficiently *contraction group symmetric tensors via set of dense symmetric contractions*

Fast Algorithms for Contraction with Group Symmetry

 \triangleright We can represent the special reduced form via a tensor diagram

 \triangleright Given a consistent choice of intermediate index in the two operand tensors, they can be unified

Fast Algorithms for Contraction with Group Symmetry

 \blacktriangleright After the indices are matched, we can contract efficiently

- \blacktriangleright Naive contraction of original tensors had cost $O(n^6)$
	- \blacktriangleright New algorithm has cost $O(n^6/G^2)$
	- **Factor of** G^2 improvement attainable for also for other (higher order) *contractions*

Bilinear Algorithm for Contraction with Group Symmetry

- \blacktriangleright A group symmetric contraction is a bilinear algorithm
	- ▶ *Can view the contraction in a nested fashion as*

$$
\mathcal{K}_{ABIJ}^{(W)} = \sum_{KL} \mathcal{K}_{ABKL}^{(U)} \cdot \mathcal{K}_{KLIJ}^{(V)}
$$

where $\bm{\mathcal{F}}=\bm{\mathcal{K}}_{ABKL}^{(U)}\in\mathbb{R}^{n\times n\times n\times n}$ and $\bm{\mathcal{G}}=\bm{\mathcal{K}}_{ABKL}^{(V)}\in\mathbb{R}^{n\times n\times n\times n},$ so that $\mathcal{H} = \mathcal{F} \cdot \mathcal{G}$ gives

$$
h_{abij} = \sum_{kl} f_{abkl} g_{klij} = \sum_{kl} u_{aA,bB,kK,lL} v_{kK,lL,iI,jJ}
$$

Indees Therefore, it suffices to find a bilinear algorithm for the first contraction of $G \times G \times G \times G$ *tensors*

$$
k_{ABIJ}^{(W)} = \sum_{KL} k_{ABKL}^{(U)} \cdot k_{KLIJ}^{(V)}
$$

with the same sparsity as irrep maps $\boldsymbol{\mathcal{M}}^{(U)},$ $\boldsymbol{\mathcal{M}}^{(V)},$ and $\boldsymbol{\mathcal{M}}^{(W)}$

▶ An algorithm for the full contraction can then be constructed by nesting with a *standard blockwise contraction*

Bilinear Algorithm for Contraction with Group Symmetry

- \triangleright The group symmetric contraction algorithm leverages a CP decomposition
	- ▶ The tensor defining the bilinear problem group symmetric contraction can be *written as*

$$
T_{ABIJ,\hat{A}\hat{B}KL,\hat{K}\hat{L}\hat{I}\hat{J}} = \delta_{A+B,I+J}\delta_{A+B,-K-L} \prod_{X \in \{A,B,I,J,K,L\}} \delta(X,\hat{X})
$$

▶ Using the CP decomposition obtained via the identity $\delta_{A+B,I+J}\delta_{A+B,-K-L}=\sum_{Q=1}^G\delta_{AB,Q}\delta_{IJ,Q}\delta_{-K-L,Q}$, we can define a bilinear a lgorithm of rank G^4 that acts as follows

$$
k^{(W)}_{ABIJ} = \sum_{\hat{A}\hat{J}LQ} \delta_{A,\hat{A}} \delta_{J,\hat{J}} \delta_{AB,Q} \delta_{IJ,Q} \left(\sum_{\hat{B}K} \delta_{-K-L,Q} k^{(U)}_{\hat{A}\hat{B}KL}\right) \label{eq:R1}
$$