CS 598 EVS: Tensor Computations Matrix Computations Background

Edgar Solomonik

University of Illinois, Urbana-Champaign

Matrices and Tensors

§ What is a matrix?

§ What is a tensor?

Matrix Norms

§ **Properties of matrix norms**:

$$
\begin{aligned}\n\|A\| &\geqslant 0\\ \n\|A\| &= 0 \quad \Leftrightarrow \quad A = 0\\ \n\|\alpha A\| &= |\alpha| \cdot \|A\|\\ \n\|A + B\| &\leqslant \|A\| + \|B\| \quad \text{(triangle inequality)}\n\end{aligned}
$$

- § **Frobenius norm**:
- § **Operator/induced/subordinate matrix norms**:

Existence of SVD

• Consider any maximizer $x_1 \in \mathbb{R}^n$ with $||x_1||_2 = 1$ to $||Ax_1||_2$

Singular Value Decomposition

§ The singular value decomposition (SVD)

§ Condition number in terms of singular values

Visualization of Matrix Conditioning

Matrix Condition Number

Extem the matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball (norm-1 vectors) transformed by A:

§ The matrix condition number bounds the worst-case amplification of error in a matrix-vector product:

Linear Systems

- ► Given a square matrix $A \in \mathbb{R}^{n \times n}$ with rank n , consider solving $Ax = b$ given b
- \blacktriangleright The SVD allows explicit inversion of A

▶ However, Gaussian elimination is more computationally efficient

 \blacktriangleright Given a factorization of $\bm A,$ solving a system with $\bm A + \bm u \bm v^T$ has cost $O(n^2)$ via the Sherman-Morrison-Woodbury formula

Linear Least Squares

$$
\text{ Find } x^* = \operatorname{argmin}_{x \in \mathbb{R}^n} \|Ax - b\|_2 \text{ where } A \in \mathbb{R}^{m \times n}:
$$

 \blacktriangleright Given the SVD $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T$ we have $\boldsymbol{x}^\star = \boldsymbol{V} \boldsymbol{\Sigma}^\dagger \boldsymbol{U}^T$ A^{\dagger} b, where Σ^{\dagger} contains the reciprocal of all nonzeros in Σ , and more generally \dagger denotes pseudoinverse:

Normal Equations

Demo: [Normal equations vs Pseudoinverse](https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html) Demo: [Issues with the normal equations](https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html)

▶ Normal equations are given by solving
$$
A^T A x = A^T b
$$
:

 \blacktriangleright However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

Solving the Normal Equations

▶ If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):

Since $A^T A$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

QR Factorization

 \triangleright If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$

 \triangleright A reduced QR factorization (unique part of general QR) is defined so that $\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ has orthonormal columns and \boldsymbol{R} is square and upper-triangular

 \triangleright We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

Computing the QR Factorization

§ The Cholesky-QR algorithm uses the normal equations to obtain the QR factorization

§ Orthogonalization-based methods are most efficient and stable for QR factorization of dense matrices

Householder orthogonalization

Eigenvalue Decomposition

§ If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

 \blacktriangleright A and B are *similar*, if there exist Z such that $A = ZBZ^{-1}$

Similarity of Matrices

Invertible similarity transformations $Y = XAX^{-1}$

Unitary similarity transformations $Y = UAU^H$

Orthogonal similarity transformations $\boldsymbol{Y} = \boldsymbol{Q}\boldsymbol{A}\boldsymbol{Q}^T$

Field of Values

 \triangleright For any square matrix A and vector x the *Rayleigh quotient* is

§ Its magnitude is bounded by the singular values as

 \blacktriangleright If x is an eigenvector of A , so $Ax = \lambda x$ or $x^H A = \lambda x^H$, then

 \blacktriangleright The set $\mathcal{F}_{\bm A} = \{\rho_{\bm A}(\bm x): \bm x\in \mathbb{C}^n, \bm x\neq 0\}$ is the *field of values* of $\bm A$

Field of Values and Eigenvalues

- Elearly any eigenvalue λ of \boldsymbol{A} is in $\mathcal{F}_{\boldsymbol{A}}$
- For the matrix $\bm{A} =$ $\Bigg\}$ 3 -3 3 1 1 $\Big|$, \mathcal{F}_A is¹
- \triangleright The field of values of a normal matrix is easy to characterize

 \blacktriangleright In general, eigenvectors are obtained from critical points of the Rayleigh quotient on the unit circle

 \overline{z}

Singular Vectors as Critical Points

▶ Like eigenvectors, we can also derive singular vectors from an optimization (critical point) perspective

Matrix Functions

 \blacktriangleright Consider a polynomial $p,$ for a diagonalizable matrix $\bm A = \bm X \bm D \bm X^{-1},$

$$
p(\boldsymbol{A}) = \boldsymbol{X} p(\boldsymbol{D}) \boldsymbol{X}^{-1}
$$

 \triangleright The above definition readily extends to other analytic functions f, but non-diagonalizable matrices require a more sophisticated definition

Crouzeix's conjecture

- ► So far, we have seen close connections between the matrix 2-norm and singular values, and between the Rayleigh quotient and the eigenvalues
- \triangleright An important open problem in numerical analysis that relates the norm with the Rayleigh quotient is Crouzeix's conjecture

Computing Eigenvalue and Singular Value Decompositions

 \triangleright Direct methods for eigenvalue problems start by reducing the matrix to upper-Hessenberg form

 \blacktriangleright Iterative methods are generally based on products with the matrix

Introduction to Krylov Subspace Methods

 \triangleright *Krylov subspace methods* work with information contained in the $n \times k$ matrix

$$
K_k = \begin{bmatrix} x_0 & Ax_0 & \cdots & A^{k-1}x_0 \end{bmatrix}
$$

 \blacktriangleright Assuming \pmb{K}_n is invertible, the matrix $\pmb{K}_n^{-1}\pmb{A}\pmb{K}_n$ is a *companion matrix* \pmb{C} :

Krylov Subspaces

► Given $Q_kR_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

$$
\mathcal{K}_k(\boldsymbol{A},\boldsymbol{x}_0)=\text{span}(\boldsymbol{Q}_k)=\{p(\boldsymbol{A})\boldsymbol{x}_0:\text{deg}(p)< k\},
$$

where p is any polynomial of degree less than k .

Extemble Krylov subspace includes the $k - 1$ approximate dominant eigenvectors generated by $k - 1$ steps of power iteration:

Rayleigh-Ritz Procedure

 \blacktriangleright The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

§ The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

Arnoldi Iteration

▶ Arnoldi iteration computes the *i*th column of H_n , h_i and the *i*th column of Arnoidi iteration computes the i th column of \bm{H}_n , \bm{h}_i ;
 \bm{Q}_n directly using the recurrence $\bm{A}\bm{q}_i = \bm{Q}_n\bm{h}_i = \sum_{j=1}^{i+1}$ $\sum\limits_{j=1}^{i+1}h_{ji}\boldsymbol{q}_j$

Multidimensional Optimization

 \blacktriangleright Minimize $f(x)$

▶ Quadratic optimization $f(x) = \frac{1}{2}x^T A x - b^T x$

Basic Multidimensional Optimization Methods

▶ Steepest descent: minimize f in the direction of the negative gradient:

▶ Given quadratic optimization problem $f(x) = \frac{1}{2}x^TAx + b^Tx$ where A is symmetric positive definite, the error $\boldsymbol{e}_k = \boldsymbol{x}_k - \boldsymbol{x}^*$ satisfies

 $||e_{k+1}||_A =$

- \blacktriangleright When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- \triangleright Convergence rate depends on the conditioning of A, since

Gradient Methods with Extrapolation

▶ We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

 $▶$ The *heavy ball method*, which uses constant $α_k = α$ and $β_k = β$, achieves better convergence than steepest descent:

Conjugate Gradient Method

§ The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method:

§ *Parallel tangents* implementation of the method proceeds as follows

Krylov Optimization

▶ Conjugate gradient (CG) finds the minimizer of $f(x) = \frac{1}{2}x^T A x - b^T x$ (which satisfies optimality condition $Ax = b$) within the Krylov subspace of A:

Conjugate Gradient Method: Optimized Form

After initialization $x_0 = 0, r_0 = b, p_0 = r_0$, the kth iteration of CG computes

$$
\begin{aligned} \boldsymbol{q}_k &= \boldsymbol{A} \boldsymbol{p}_k \\ \alpha_k &= \frac{\boldsymbol{r}_k^T \boldsymbol{r}_k}{\boldsymbol{q}_k^T \boldsymbol{p}_k} \\ \boldsymbol{x}_{k+1} &= \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k \\ \boldsymbol{r}_{k+1} &= \boldsymbol{r}_k - \alpha_k \boldsymbol{q}_k \end{aligned}
$$

At this point if the residual norm ($||r_{k+1}||$) is small, terminate, otherwise prepare for next iteration,

$$
\boldsymbol{p}_{k+1} = \boldsymbol{r}_{k+1} + \frac{\boldsymbol{r}_{k+1}^T \boldsymbol{r}_{k+1}}{\boldsymbol{r}_k^T \boldsymbol{r}_k} \boldsymbol{p}_k
$$

See Jonathan Shewchuk 1994 notes on CG or James Demmel's book for the derivation of this form of the algorithm.

Conjugate Gradient Convergence Analysis

In previous discussion, we assumed K_n is invertible, which may not be the case if A has $k < n$ distinct eigenvalues, however, then CG converges in $k - 1$ iterations (in exact arithmetic)

Round-off Error in Conjugate Gradient

- \triangleright CG provides strong convergence quarantees for SPD matrices in exact arithmetic
	- ▶ Classically, CG was viewed as a direct method, since its quaranteed to convergence in n iterations
	- § In practice, round-off error prevents CG from achieving this for realistic matrices, so CG was actually abandoned for a while due to being viewed as unstable
	- ► Later, it was realized that CG is highly competitive as an iterative method
- ▶ Due to round-off CG may stagnate / have plateaus in convergence
	- \blacktriangleright A formal analysis of round-off error² reveals that CG with round-off is equivalent to exact CG on a matrix of larger dimension, whose eigenvalues are clustered around those of A
	- \blacktriangleright Using this view, CG convergence plateaus may be explained by the polynomial q_k developing more and more zeros near the same eigenvalue of \boldsymbol{A}

²A. Greenbaum and Z. Strakos, SIMAX 1992

Preconditioning

► Convergence of iterative methods for $Ax = b$ depends on $\kappa(A)$, the goal of a preconditioner M is to obtain x by solving

$$
\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{M}^{-1}\boldsymbol{b}
$$

with $\kappa(M^{-1}A)<\kappa(A)$

- \blacktriangleright need not form $M^{-1}A$ but only compute matrix-vector products $M^{-1}(Ax)$
- \blacktriangleright want $M^{-1}x$ to be easy to compute (easier than $A^{-1}x$)
- ► so generally one extracts some $M \approx A$ that is easy to solve linear systems with
- ▶ however, $M \approx A$ may be insufficient/unnecessary, primary goal is to improve conditioning to accelerate iterative methods, i.e., want $\kappa(M^{-1}A)\ll \kappa(A)$
- \blacktriangleright Common preconditioners select parts of A or perform inexact factorization
	- \blacktriangleright (block-)Jacobi preconditioner takes M to be (block-)diagonal of A
	- incomplete LU (ILU) preconditioners compute $M = LU \approx A$ (+pivoting)
	- E ILU variants constraint sparsity of L and U factors during factorization to be the same or not much more than that of A
	- § good problem-specific preconditioners are often available in practice and theory, applying also to problems beyond linear systems (eigenvalue problems, optimization, approximate graph algorithms)

Newton's Method

 \blacktriangleright Newton's method in n dimensions is given by finding minima of n -dimensional quadratic approximation using the gradient and Hessian of f :

Nonlinear Least Squares

§ An important special case of multidimensional optimization is *nonlinear least squares*, the problem of fitting a nonlinear function $f_{\bm{x}}(t)$ so that $f_{\bm{x}}(t_i) \approx y_i$:

► We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton's method:

Gauss-Newton Method

▶ The Hessian for nonlinear least squares problems has the form:

§ The *Gauss-Newton* method is Newton iteration with an approximate Hessian:

Low Rank Matrix Approximation

▶ Given a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ seek rank $r < m, n$ approximation

▶ Eckart-Young (optimal low-rank approximation by SVD) theorem

Rank Revealing Matrix Factorizations

▶ Computing the SVD

▶ QR with column pivoting

Simultaneous and Orthogonal Iteration

▶ Orthogonal iteration computing many eigenvectors at once in an iterative way

Orthogonal Iteration Convergence

▶ If A has distinct eigenvalues and R_i has positive decreasing diagonal, the *i*th column of Q_i converges to the *i*th Schur vector of A linearly with rate $\max(|\lambda_{i+1}/\lambda_i|, |\lambda_i/\lambda_{i-1}|).$

Randomized SVD

▶ Orthogonal iteration for SVD can also be viewed as a randomized algorithm

Generalized Nyström Algorithm

► The generalized Nyström algorithm provides an efficient way of computing a low-rank factorization given an approximation of its span³

³Nakatsukasa, Yuji, Fast and stable randomized low-rank matrix approximation, 2020.

Analysis of Generalized Nyström Algorithm

 \blacktriangleright Consider $\boldsymbol{F_1} = \boldsymbol{A}\boldsymbol{S}_1^T$ and $\boldsymbol{F_2} = \boldsymbol{A}\boldsymbol{S}_2^T$, derive the minimizer \boldsymbol{Z} to

 $\| \bm A - \bm F_1 \bm Z \bm F_2^T \|_F$

 \triangleright The generalized Nyström algorithm may be interpreted as applying a two-sided oblique projection of A