CS 598 EVS: Tensor Computations Matrix Computations Background

Edgar Solomonik

University of Illinois, Urbana-Champaign

Matrices and Tensors

- § What is a matrix?
	- \blacktriangleright A collection of numbers arranged into an array of dimensions $m \times n$, e.g., $\boldsymbol{M} \in \mathbb{R}^{m \times n}$
	- \blacktriangleright A linear operator $f(x) = Mx$
	- \blacktriangleright A bilinear form $\boldsymbol{x}^T\boldsymbol{M}\boldsymbol{y}$
- § What is a tensor?
	- § *A collection of numbers arranged into an array of a particular order, with* $\emph{dimensions } l \times m \times n \times \cdots$, e.g., $\bm{\mathcal{T}} \in \mathbb{R}^{l \times m \times n}$ is order 3
	- \blacktriangleright A multilinear operator $z = f(x, y)$

$$
z_i = \sum_{j,k} t_{ijk} x_j y_k
$$

 \blacktriangleright A multilinear form $\sum_{i,j,k} t_{ijk} x_i y_j z_k$

Matrix Norms

§ **Properties of matrix norms**:

$$
\begin{aligned}\n\|A\| &\geq 0 \\
\|A\| &= 0 \quad \Leftrightarrow \quad A = 0 \\
\|\alpha A\| &= |\alpha| \cdot \|A\| \\
\|A + B\| &\leq \|A\| + \|B\| \quad \text{(triangle inequality)}\n\end{aligned}
$$

§ **Frobenius norm**:

$$
\left\|{\mathbf A}\right\|_F = \bigg(\sum_{i,j} a_{ij}^2\bigg)^{1/2}
$$

§ **Operator/induced/subordinate matrix norms**:

For any vector norm $\left\| \cdot \right\|_p$, the induced matrix norm is

$$
\left\|\bm{A}\right\|_p=\max_{\bm{x}\neq\bm{0}}\left\|\bm{A}\bm{x}\right\|_p/\left\|\bm{x}\right\|_p=\max_{\left\|\bm{x}\right\|_p=1}\left\|\bm{A}\bm{x}\right\|_p
$$

Existence of SVD

• Consider any maximizer $x_1 \in \mathbb{R}^n$ with $||x_1||_2 = 1$ to $||Ax_1||_2$

Let $\bm{y}_1 = \bm{A}\bm{x}_1/\|\bm{A}\bm{x}_1\|_2$ and $\sigma_1 = \bm{y}_1^T\bm{A}\bm{x}_1 = \|\bm{A}\bm{x}_1\|_2$, then consider any *maximizer* x_2 *of* $\ddot{}$ ›

$$
\left\|(\boldsymbol{A}-\sigma_1 \boldsymbol{y}_1 \boldsymbol{x}_1^T)\boldsymbol{x}_2\right\|_2.
$$

We can see that $x_1 \perp x_2$ *since, otherwise, we have* $x_2 = \alpha x_1 + \tilde{x}_2$ *with* $\tilde{x}_{2} \perp x_{1}$ and $\left\| \tilde{x}_{2} \right\|_{2} < \left\| x_{2} \right\|_{2}$ and

$$
\left\|(\boldsymbol{A}-\sigma_1 \boldsymbol{y}_1 \boldsymbol{x}_1^T)(\alpha \boldsymbol{x}_1 + \boldsymbol{\tilde{x}}_2)\right\|_2 = \left\|(\boldsymbol{A}-\sigma_1 \boldsymbol{y}_1 \boldsymbol{x}_1^T)\boldsymbol{\tilde{x}}_2\right\|_2.
$$

Hence we have a contradiction, since › ›

$$
\left\|(\boldsymbol{A}-\sigma_1 \boldsymbol{y}_1 \boldsymbol{x}_1^T)\boldsymbol{x}_2\right\|_2 < (1/\left\|\tilde{\boldsymbol{x}}_2\right\|_2)\left\|(\boldsymbol{A}-\sigma_1 \boldsymbol{y}_1 \boldsymbol{x}_1^T)\tilde{\boldsymbol{x}}_2\right\|_2.
$$

More generally, we can see that any maximizer x_{i+1} to
—

$$
\|(\boldsymbol{A} - \begin{bmatrix} \boldsymbol{y}_1 & \cdots & \boldsymbol{y}_i \end{bmatrix}\begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_i \end{bmatrix} \begin{bmatrix} \boldsymbol{x}_1 & \cdots & \boldsymbol{x}_i \end{bmatrix}^T) \boldsymbol{x}_{i+1} \|_2
$$

is orthogonal to x_1, \ldots, x_i *and similar for* y_{i+1} *.*

Singular Value Decomposition

 \blacktriangleright The singular value decomposition (SVD)

We can express any matrix A *as*

$$
\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T
$$

where U *and* V *are orthogonal, and* Σ *is square nonnegative and diagonal,* » fi

The columns of U *and* V *are left and right singular vectors of* A*, i.e.,*

$$
A v_i = \sigma_i u_i, \quad \mathbf{u}_i^T A = \sigma_i \mathbf{v}_i^T
$$

- § Condition number in terms of singular values
	- \blacktriangleright We have that $\|\bm{A}\|_2 = \sigma_{\textit{max}}$ and if \bm{A}^{-1} exists, $\|\bm{A}^{-1}\|_2 = 1/\sigma_{\textit{min}}$
	- \blacktriangleright Consequently, $\kappa(A) = \|A\|_2 \|A^{-1}\|_2 = \sigma_{max}/\sigma_{min}$

Visualization of Matrix Conditioning

Matrix Condition Number

- Eightharftriangleright The matrix condition number $\kappa(A)$ is the ratio between the max and min distance from the surface to the center of the unit ball (norm-1 vectors) transformed by A :
	- \blacktriangleright The max distance to center is given by the vector maximizing $\max_{\|\bm{x}\| = 1} \|\bm{Ax}\|_2.$
	- § *The min distance to center is given by the vector minimizing* › › $\min_{\|\bm{x}\|=1} \|\bm{A}\bm{x}\|_2 = 1/(\max_{\|\bm{x}\|=\perp} \|\bm{A}^{-1}\bm{x}\|_2).$
	- \blacktriangleright Thus, we have that $\kappa(\bm{A}) = \|\bm{A}\|_2 \left\| \bm{A}^{-1} \right\|_2$
- ► The matrix condition number bounds the worst-case amplification of error in a matrix-vector product: *Consider* $y + \delta y = A(x + \delta x)$, assume $||x||_{2} = 1$
	- \blacktriangleright In the worst case, $\left\|\bm{y}\right\|_2$ is minimized, that is $\left\|\bm{y}\right\|_2=1/\left\|\bm{A}^{-1}\right\|_2$
	- \blacktriangleright In the worst case, $\left\|\delta y\right\|_2$ is maximized, that is $\left\|\delta y\right\|_2=\left\|A\right\|_2\left\|\delta y\right\|_2$
	- \blacktriangleright So $\left\| \boldsymbol{\delta y}\right\|_2/\left\| \boldsymbol{y}\right\|_2$ is at most $\kappa(\boldsymbol{A})\left\| \boldsymbol{\delta x}\right\|_2/\left\| \boldsymbol{x}\right\|_2$

Linear Systems

- ▶ Given a square matrix $A \in \mathbb{R}^{n \times n}$ with rank n , consider solving $Ax = b$ given b
- \blacktriangleright The SVD allows explicit inversion of \bm{A}

$$
\boldsymbol{A}^{-1} = \boldsymbol{V} \boldsymbol{\Sigma}^{-1} \boldsymbol{U}^T
$$

- ▶ However, Gaussian elimination is more computationally efficient
	- \triangleright *Can factorize arbitrary* A as $A = PLU$ for permutation matrix P and *triangular* L*,* U
	- \blacktriangleright For symmetric A LDLT factorization is $A = PLDL^T P^T$, where D has diagonal *entries of 2-by-2 anti-diagonal symmetric blocks*
	- § *If positive definite, Cholesky requires no pivoting/permutation*
	- \blacktriangleright Suffices to solve linear systems in $O(n^2)$ cost using triangular solve
- ▶ Given a factorization of \bm{A} , solving a system with $\bm{A} + \bm{u}\bm{v}^T$ has cost $O(n^2)$ via the Sherman-Morrison-Woodbury formula

Linear Least Squares

 \blacktriangleright Find $x^* = \operatorname{argmin}_{\bm{x} \in \mathbb{R}^n} \|\bm{Ax} - \bm{b}\|_2$ where $\bm{A} \in \mathbb{R}^{m \times n}$:

Since $m \geq n$, the minimizer generally does not attain a zero residual $Ax - b$. *We can rewrite the optimization problem constraint via*

$$
\boldsymbol{x}^{\star} = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} \| \boldsymbol{A}\boldsymbol{x} - \boldsymbol{b} \|_2^2 = \operatorname*{argmin}_{\boldsymbol{x} \in \mathbb{R}^n} \left[(\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b})^T (\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}) \right]
$$

▶ Given the SVD $\bm A = \bm U \bm \Sigma \bm V^T$ we have $\bm x^\star = \bm{\mathcal{Y}} \bm \Sigma^\dagger \bm U^T \bm b,$ where $\bm \Sigma^\dagger$ contains the A^{\dagger}

reciprocal of all nonzeros in Σ , and more generally \dagger denotes pseudoinverse:

 \blacktriangleright The minimizer satisfies $U \Sigma V^T x^\star \cong b$ and consequently also satisfies

$$
\Sigma y^{\star} \cong d \quad \text{where } y^{\star} = V^T x^{\star} \text{ and } d = U^T b.
$$

 \blacktriangleright The minimizer of the reduced problem is $\bm{y}^\star = \bm{\Sigma}^\dagger \bm{d}$, so $y_i = d_i / \sigma_i$ for $i \in \{1, \ldots, n\}$ and $y_i = 0$ for $i \in \{n + 1, \ldots, m\}$.

Normal Equations

Demo: [Normal equations vs Pseudoinverse](https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html) Demo: [Issues with the normal equations](https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html)

▶ Normal equations are given by solving
$$
A^T A x = A^T b
$$
:

If $A^T A x = A^T b$ *then*

$$
(U\Sigma V^T)^T U \Sigma V^T x = (U\Sigma V^T)^T b
$$

$$
\Sigma^T \Sigma V^T x = \Sigma^T U^T b
$$

$$
V^T x = (\Sigma^T \Sigma)^{-1} \Sigma^T U^T b = \Sigma^{\dagger} U^T b
$$

$$
x = V \Sigma^{\dagger} U^T b = x^*
$$

 \blacktriangleright However, solving the normal equations is a more ill-conditioned problem then the original least squares algorithm

 \bm{G} enerally we have $\kappa(\bm{A}^T\bm{A})=\kappa(\bm{A})^2$ (the singular values of $\bm{A}^T\bm{A}$ are the *squares of those in* A*). Consequently, solving the least squares problem via the normal equations may be unstable because it involves solving a problem that has worse conditioning than the initial least squares problem.*

Solving the Normal Equations

- ▶ If A is full-rank, then $A^T A$ is symmetric positive definite (SPD):
	- \blacktriangleright Symmetry is easy to check $(\boldsymbol{A}^T\boldsymbol{A})^T = \boldsymbol{A}^T\boldsymbol{A}$.
	- \blacktriangleright \bm{A} being full-rank implies $\sigma_{\sf min}>0$ and further if $\bm{A} = \bm{U} \bm{\Sigma} \bm{V}^T$ we have

$$
\boldsymbol{A}^T\boldsymbol{A}=\boldsymbol{V}^T\boldsymbol{\Sigma}^2\boldsymbol{V}
$$

which implies that rows of V *are the eigenvectors of* A^TA *with eigenvalues* $\Sigma²$ *since* $A^T A V^T = V^T \Sigma^2$.

▶ Since $A^T A$ is SPD we can use Cholesky factorization, to factorize it and solve linear systems:

$$
\bm A^T\bm A = \bm L\bm L^T
$$

QR Factorization

If A is full-rank there exists an orthogonal matrix Q and a unique upper-triangular matrix R with a positive diagonal such that $A = QR$

• Given
$$
A^T A = LL^T
$$
, we can take $R = L^T$ and obtain $Q = AL^{-T}$, since $\underbrace{L^{-1}A^T}_{Q^T} \underbrace{AL^{-T}}_{Q} = I$ implies that Q has orthonormal columns.

- \triangleright A reduced OR factorization (unique part of general OR) is defined so that $\boldsymbol{Q} \in \mathbb{R}^{m \times n}$ has orthonormal columns and \boldsymbol{R} is square and upper-triangular A full QR factorization gives $\bm{Q} \in \mathbb{R}^{m \times m}$ and $\bm{R} \in \mathbb{R}^{m \times n}$, but since \bm{R} is upper *triangular, the latter* $m - n$ *columns of* Q *are only constrained so as to keep* Q *orthogonal. The reduced QR factorization is given by taking the first* n *columns* Q and \hat{Q} the upper-triangular block of R , \hat{R} giving $A = \hat{Q}\hat{R}$.
- \triangleright We can solve the normal equations (and consequently the linear least squares problem) via reduced QR as follows

$$
A^T A x = A^T b \quad \Rightarrow \quad \hat{R}^T \underbrace{\hat{Q}^T \hat{Q}}_{I} \hat{R} x = \hat{R}^T \hat{Q}^T b \quad \Rightarrow \quad \hat{R} x = \hat{Q}^T b
$$

Computing the QR Factorization

- \triangleright The Cholesky-OR algorithm uses the normal equations to obtain the OR factorization
	- \blacktriangleright Compute $\bm{A}^T\bm{A} = \bm{L}\bm{L}^T$, take $\bm{R} = \bm{L}^T$, and solve for \bm{Q} triangular linear systems $LO^T = A^T$
	- \blacktriangleright If A is $m \times n$, forming $\bm A^T \bm A$ has cost mn^2 , computing Cholesky factorization has cost $(2/3)n^3$, and solving the triangular systems (if \boldsymbol{Q} is needed) costs mn^2 , yielding total cost $2mn^2 + (2/3)n^3$
	- \blacktriangleright *However, this method is unstable since* $A^T A$ *is ill-conditioned. This is addressible by iterating on the computed (nearly-orthogonal)* Q *factor (CholeskyQR2).*
- § Orthogonalization-based methods are most efficient and stable for QR factorization of dense matrices
	- \blacktriangleright Apply a sequence of orthogonal transformations Q_1, \ldots, Q_k to reduce A to \boldsymbol{t} riangular form $(\boldsymbol{Q}_1 \cdots \boldsymbol{Q}_k)^T \boldsymbol{A} = \boldsymbol{R}$
	- § *Householder QR uses rank-1 perturbations of the identity matrix (reflectors)* $\boldsymbol{Q}_i = \boldsymbol{I} - 2 \boldsymbol{u}_i \boldsymbol{u}_i^T$ to zero-out each sub-column of \boldsymbol{A}
	- § *Givens rotations zero-out a single entry at a time*
	- \blacktriangleright Both approaches have cost $O(mn^2)$ with similar constant to Cholesky-QR

Householder orthogonalization

Eigenvalue Decomposition

§ If a matrix A is diagonalizable, it has an *eigenvalue decomposition*

 $A = X D X^{-1}$

where X are the right eigenvectors, X^{-1} are the left eigenvectors and D are *eigenvalues*

$$
A\boldsymbol{X}=\begin{bmatrix} A\boldsymbol{x}_1 & \cdots A\boldsymbol{x}_n \end{bmatrix}=\boldsymbol{X}\boldsymbol{D}=\begin{bmatrix} d_{11}\boldsymbol{x}_1 & \cdots & d_{nn}\boldsymbol{x}_n \end{bmatrix}.
$$

- § *If* A *is symmetric, its right and left singular vectors are the same, and consequently are its eigenvectors.*
- \blacktriangleright *More generally, any normal matrix,* $A^H A = AA^H$ *, has unitary eigenvectors.*
- \blacktriangleright A and B are *similar*, if there exist Z such that $A = ZBZ^{-1}$
	- \blacktriangleright *Normal matrices are unitarily similar* $(Z^{-1} = Z^H)$ to diagonal matrices
	- \blacktriangleright Symmetric real matrices are orthogonally similar ($\boldsymbol{Z}^{-1} = \boldsymbol{Z}^T$) to real diagonal *matrices*
	- § *Hermitian matrices are unitarily similar to real diagonal matrices*

Similarity of Matrices

Invertible similarity transformations $Y = XAX^{-1}$

Unitary similarity transformations $\bm{Y} = \bm{U}\bm{A}\bm{U}^H$

Orthogonal similarity transformations $\boldsymbol{Y} = \boldsymbol{Q}\boldsymbol{A}\boldsymbol{Q}^T$

Field of Values

 \triangleright For any square matrix A and vector x the *Rayleigh quotient* is

$$
\rho_{\bm{A}}(\bm{x}) = \frac{\bm{x}^H\bm{A}\bm{x}}{\bm{x}^H\bm{x}}
$$

 \blacktriangleright Its magnitude is bounded by the singular values as

$$
1/\left\|A\right\|_{2}^{-1} \leqslant \rho_{A}(x)\right\| \leqslant \left\|A\right\|_{2}
$$

 \blacktriangleright If x is an eigenvector of A , so $Ax = \lambda x$ or $x^H A = \lambda x^H$, then

$$
\rho_{\bm{A}}(\bm{x}) = \lambda
$$

 \blacktriangleright The set $\mathcal{F}_A = \{ \rho_A(x) : x \in \mathbb{C}^n, x \neq 0 \}$ is the *field of values* of A

Field of Values and Eigenvalues

Elearly any eigenvalue λ of \boldsymbol{A} is in $\mathcal{F}_{\boldsymbol{A}}$

$$
\triangleright \text{ For the matrix } \mathbf{A} = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \mathcal{F}_{\mathbf{A}} \text{ is } 1 \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

- \triangleright The field of values of a normal matrix is easy to characterize
	- \blacktriangleright *If* A is normal, \mathcal{F}_A is the convex hull of the eigenvalues.
	- **•** If A is Hermitian and positive definite, $\mathcal{F}_A = [\sigma_{min}, \sigma_{max}]$
- \triangleright In general, eigenvectors are obtained from critical points of the Rayleigh quotient on the unit circle

$$
\mathcal{L}_{\mathbf{A}}(\mathbf{x}, \lambda) = \mathbf{x}^{H} \mathbf{A} \mathbf{x} + \lambda (1 - \mathbf{x}^{H} \mathbf{x})
$$

$$
\nabla \mathcal{L}_{\mathbf{A}}(\mathbf{x}, \lambda) = \begin{bmatrix} 2\mathbf{A} \mathbf{x} - 2\lambda \mathbf{x} \\ 1 - \mathbf{x}^{H} \mathbf{x} \end{bmatrix} = 0,
$$

¹Credit to <https://www.chebfun.org/examples/linalg/FieldOfValues.html>

Singular Vectors as Critical Points

- \blacktriangleright Like eigenvectors, we can also derive singular vectors from an optimization (critical point) perspective
	- § *Again, consider the critical points of the Lagrangian function of an optimization problem on the unit-sphere,*

$$
\mathcal{L}_{\mathbf{A}}(\mathbf{u}, \mathbf{v}, \lambda_1, \lambda_2) = 2\mathbf{u}^H \mathbf{A} \mathbf{v} + \lambda_1 (1 - \mathbf{u}^H \mathbf{u}) + \lambda_2 (1 - \mathbf{v}^H \mathbf{v})
$$

$$
\nabla \mathcal{L}_{\mathbf{A}}(\mathbf{u}, \mathbf{v}, \lambda_1, \lambda_2) = \begin{bmatrix} 2\mathbf{A} \mathbf{v} - 2\lambda_1 \mathbf{u} \\ 2\mathbf{A}^H \mathbf{u} - 2\lambda_2 \mathbf{v} \\ 1 - \mathbf{u}^H \mathbf{u} \\ 1 - \mathbf{v}^H \mathbf{v} \end{bmatrix} = 0,
$$

 \blacktriangleright At a critical point, we can see that $\lambda_1 = \lambda_2$, since $\bm{u}^H \bm{A} \bm{v} = \lambda_1 = \lambda_2.$

Matrix Functions

 \blacktriangleright Consider a polynomial $p,$ for a diagonalizable matrix $\boldsymbol{A} = \boldsymbol{X}\boldsymbol{D}\boldsymbol{X}^{-1},$

$$
p(\mathbf{A}) = \mathbf{X} p(\mathbf{D}) \mathbf{X}^{-1}
$$

$$
p(\boldsymbol{A}) = \sum_{i=0}^{\textit{deg}(p)} c_i \boldsymbol{A}^i = \sum_{i=0}^{\textit{deg}(p)} c_i \prod_{j=1}^i \boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{-1} \\ = \sum_{i=0}^{\textit{deg}(p)} c_i \boldsymbol{X} \boldsymbol{D}^i \boldsymbol{X}^{-1} = \boldsymbol{X} \bigg(\sum_{i=0}^{\textit{deg}(p)} c_i \boldsymbol{D}^i \bigg) \boldsymbol{X}^{-1}
$$

 \triangleright The above definition readily extends to other analytic functions f, but non-diagonalizable matrices require a more sophisticated definition

Crouzeix's conjecture

- \triangleright So far, we have seen close connections between the matrix 2-norm and singular values, and between the Rayleigh quotient and the eigenvalues
- \triangleright An important open problem in numerical analysis that relates the norm with the Rayleigh quotient is Crouzeix's conjecture
	- § *For any polynomial* p *and complex matrix* A*,*

$$
\|p(\boldsymbol{A})\|_2 \leqslant 2 \max_{z \in \mathcal{F}_A} |p(z)|
$$

- § *The conjecture is known to hold for some subclasses of matrices and with constant 11.08 instead of 2 (Crouzeix's theorem)* "
- ▶ If valid, the bound of 2 is tight, including for $p(A) = A$, by choosing $A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$

Computing Eigenvalue and Singular Value Decompositions

- \triangleright Direct methods for eigenvalue problems start by reducing the matrix to upper-Hessenberg form
	- § *Seek a sequence of unitary similarity transformations* $\boldsymbol{H} = \boldsymbol{Q}_k \cdots \boldsymbol{Q}_1 \boldsymbol{A} \boldsymbol{Q}_1^T \cdots \boldsymbol{Q}_k^T$ so that \boldsymbol{H} is zero below the first subdiagonal *(upper-Hessenberg)*
	- \blacktriangleright *Can pick each Q_i as a Householder transformation acting on the last* $n i$ *rows*
	- $\;\blacktriangleright\; O(n^3)$ cost to reduce to upper-Hessenberg or tridiagonal if symmetric
	- \blacktriangleright *To obtain singular vectors, can work with* A^TA *or perform 'bidiagonal reduction'*
	- § *If matrix is sparse, fill may be introduced*
- \blacktriangleright Iterative methods are generally based on products with the matrix
	- § *Power iteration converges to the largest eigenvalue eigenvectors of* A
	- § *Convergence rate is linear and depends on ratio of two largest eigenvalues*
	- § *Integrating diagonal shifts and inversion yields other methods: inverse iteration, Rayleigh-quotient iteration*
	- § *Most iterative methods involve only products with* A *or a related matrix*

Introduction to Krylov Subspace Methods

 \triangleright *Krylov subspace methods* work with information contained in the $n \times k$ matrix .
. ‰

$$
\boldsymbol{K}_k = \begin{bmatrix} x_0 & Ax_0 & \cdots & A^{k-1}x_0 \end{bmatrix}
$$

We seek to best use the information from the matrix vector product results (columns of K_k) to solve eigenvalue problems.

 \blacktriangleright Assuming \pmb{K}_n is invertible, the matrix $\pmb{K}_n^{-1}\pmb{A}\pmb{K}_n$ is a *companion matrix C*: Letting $\boldsymbol{k}_n^{(i)} = A^{i-1} \boldsymbol{x}$, we observe that ı .
.
. ı

$$
A K_n = \begin{bmatrix} A k_n^{(1)} & \cdots & A k_n^{(n-1)} & A k_n^{(n)} \end{bmatrix} = \begin{bmatrix} k_n^{(2)} & \cdots & k_n^{(n)} & A k_n^{(n)} \end{bmatrix},
$$

therefore premultiplying by \boldsymbol{K}_{m}^{-1} transforms the first $n-1$ columns of \boldsymbol{AK}_{n} \int *into the last* $n - 1$ *columns of I,* ı

$$
K_n^{-1}AK_n = \begin{bmatrix} K_n^{-1}k_n^{(2)} & \cdots & K_n^{-1}k_n^{(n)} & K_n^{-1}Ak_n^{(n)} \end{bmatrix} \\ = \begin{bmatrix} e_2 & \cdots & e_n & K_n^{-1}Ak_n^{(n)} \end{bmatrix}
$$

Krylov Subspaces

► Given $Q_kR_k = K_k$, we obtain an orthonormal basis for the Krylov subspace,

 $\mathcal{K}_k(A, x_0) = \text{span}(Q_k) = \{p(A)x_0 : \text{deg}(p) < k\},$

where p is any polynomial of degree less than k .

- Extemble Krylov subspace includes the $k 1$ approximate dominant eigenvectors generated by $k - 1$ steps of power iteration:
	- \blacktriangleright The approximation obtained from $k 1$ steps of power iteration starting from x_0 *is given by the Rayleigh-quotient of* $y = A^kx₀$.
	- ▶ This vector is within the Krylov subspace, $y \in K_k(A, x_0)$.
	- § *Consequently, Krylov subspace methods will generally obtain strictly better approximations of the dominant eigenpair than power iteration.*

Rayleigh-Ritz Procedure

 \blacktriangleright The eigenvalues/eigenvectors of H_k are the *Ritz values/vectors*:

 $H_k = XDX^{-1}$

eigenvalue approximations based on Ritz vectors X are given by $Q_k X$.

§ The Ritz vectors and values are the *ideal approximations* of the actual eigenvalues and eigenvectors based on only H_k and Q_k :

Assuming A *is a symmetric matrix with positive eigenvalues, the largest Ritz value* $\lambda_{max}(H_k)$ *will be the maximum Rayleigh quotient of any vector in* $\mathcal{K}_k = span(\mathbf{Q}_k)$,

$$
\max_{\boldsymbol{x}\in span(\boldsymbol{Q}_k)}\frac{\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}}{\boldsymbol{x}^T\boldsymbol{x}}=\max_{\boldsymbol{y}\neq 0}\frac{\boldsymbol{y}^T\boldsymbol{Q}_k^T\boldsymbol{A}\boldsymbol{Q}_k\boldsymbol{y}}{\boldsymbol{y}^T\boldsymbol{y}}=\max_{\boldsymbol{y}\neq 0}\frac{\boldsymbol{y}^T\boldsymbol{H}_k\boldsymbol{y}}{\boldsymbol{y}^T\boldsymbol{y}}=\lambda_{\textit{max}}(\boldsymbol{H}_k),
$$

which is the best approximation to $\lambda_{\textit{max}}(\boldsymbol{A}) = \max_{\boldsymbol{x} \neq 0} \frac{\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x}}{\boldsymbol{x}^T \boldsymbol{x}}$ $\frac{x^T A x}{x^T x}$ available in \mathcal{K}_k . *The quality of the approximation can also be shown to be optimal for other eigenvalues/eigenvectors.*

Arnoldi Iteration

- Extemble interation computes the *i*th column of H_n , h_i and the *i*th column of Arnoldi lieration computes the i th column of \bm{H}_n , \bm{h}_i and \bm{Q}_n directly using the recurrence $\bm{A}\bm{q}_i = \bm{Q}_n\bm{h}_i = \sum_{j=1}^{i+1}$ $\prod\limits_{j=1}^{i+1}h_{ji}\boldsymbol{q}_j$
	- § *Note that*

$$
\boldsymbol{q}_i^T\boldsymbol{A}\boldsymbol{q}_j=\boldsymbol{q}_i^T(\boldsymbol{Q}_n\boldsymbol{H}_n\boldsymbol{Q}_n^T)\boldsymbol{q}_j=\boldsymbol{e}_i^T\boldsymbol{H}_n\boldsymbol{e}_j=h_{ij}.
$$

 \blacktriangleright *The Arnoldi algorithm computes* q_{i+1} *from* q_1, \ldots, q_i *by first computing* $u_i = Aq_i$ then orthogonalizing,

$$
\boldsymbol{q}_{i+1}h_{i+1,i} = \boldsymbol{u}_i - \sum_{j=1}^i \boldsymbol{q}_j h_{ji}, \quad h_{ji} = \boldsymbol{q}_j^T \boldsymbol{u}_i
$$

then computing the norm of the vector to obtain $h_{i+1,i}$ *, yielding the ith column* of H_n .

Multidimensional Optimization

- \blacktriangleright Minimize $f(x)$
	- § *In the context of constrained optimization, also have equality and or inequality constraints, e.g.,* $Ax = b$ *or* $x > 0$
	- ▸ Unconstrained local optimality holds if $\nabla f(\bm{x}^{*}) = 0$ and $H_f(\bm{x}^{*})$ is positive *semi-definite*
	- § *Reduces to solving nonlinear equations via optimality condition*
	- § *Unconstrained local optimality conditions are looser, need the gradient to be* zero or positive in all unconstrained directions at x^\ast
	- \blacktriangleright The condition $\nabla f(\boldsymbol{x^*})=0$ implies poor conditioning, perturbations that change *the function value in the kth digit can change the sollution in the* $(k/2)$ *th digit*
- ▶ Quadratic optimization $f(x) = \frac{1}{2}x^TAx b^Tx$
	- § *Quadratic optimization problems can provide local approximations to general nonlinear optimization problems via Newton's method (where* A *is the Hessian* and \bm{b}^T is the gradient)
	- \blacktriangleright *Equivalent to solving linear system* $Ax = b$ *by optimality condition*
	- \blacktriangleright Accordingly, conditioning relative to perturbation in b is $\kappa(A)$

Basic Multidimensional Optimization Methods

▶ Steepest descent: minimize f in the direction of the negative gradient:

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)
$$

 $\mathsf{such\ that}\ f(\boldsymbol{x}_{k+1}) = \min_{\alpha_k} f(\boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k)),$ i.e. perform a line search *(solve 1D optimization problem) in the direction of the negative gradient.*

▶ Given quadratic optimization problem $f(x) = \frac{1}{2}x^{T}Ax + b^{T}x$ where A is symmetric positive definite, the error $\boldsymbol{e}_k = \boldsymbol{x}_k - \boldsymbol{x}^*$ satisfies

$$
||e_{k+1}||_{\boldsymbol{A}} = \boldsymbol{e}_{k+1}^T \boldsymbol{A} \boldsymbol{e}_{k+1} = \frac{\sigma_{\text{max}}(\boldsymbol{A}) - \sigma_{\text{min}}(\boldsymbol{A})}{\sigma_{\text{max}}(\boldsymbol{A}) + \sigma_{\text{min}}(\boldsymbol{A})} ||e_k||_{\boldsymbol{A}}
$$

- \blacktriangleright When sufficiently close to a local minima, general nonlinear optimization problems are described by such an SPD quadratic problem.
- \blacktriangleright Convergence rate depends on the conditioning of A , since

$$
\frac{\sigma_{\text{max}}(A) - \sigma_{\text{min}}(A)}{\sigma_{\text{max}}(A) + \sigma_{\text{min}}(A)} = \frac{\kappa(A) - 1}{\kappa(A) + 1}.
$$

Gradient Methods with Extrapolation

► We can improve the constant in the linear rate of convergence of steepest descent by leveraging *extrapolation methods*, which consider two previous iterates (maintain *momentum* in the direction $x_k - x_{k-1}$):

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) + \beta_k (\boldsymbol{x}_k - \boldsymbol{x}_{k-1})
$$

Figure 1 The *heavy ball method*, which uses constant $\alpha_k = \alpha$ and $\beta_k = \beta$, achieves better convergence than steepest descent:

$$
||e_{k+1}||_A=\frac{\sqrt{\kappa(A)}-1}{\sqrt{\kappa(A)}+1}||e_k||_A
$$

Nesterov's gradient optimization method is another instance of an extrapolation method that provides further improved optimality guarantees.

Conjugate Gradient Method

§ The *conjugate gradient method* is capable of making the optimal (for a quadratic objective) choice of α_k and β_k at each iteration of an extrapolation method:

$$
(\alpha_k, \beta_k) = \underset{\alpha_k, \beta_k}{\text{argmin}} \left[f\left(\boldsymbol{x}_k - \alpha_k \nabla f(\boldsymbol{x}_k) + \beta_k(\boldsymbol{x}_k - \boldsymbol{x}_{k-1})\right) \right]
$$

- § *For SPD quadratic programming problems, conjugate gradient is an optimal first order method, converging in* n *iterations.*
- § *It implicitly computes Lanczos iteration, searching along* A*-orthogonal directions at each step.*
- § *Parallel tangents* implementation of the method proceeds as follows
	- 1. Perform a step of steepest descent to generate \hat{x}_k from x_k .
	- 2. Generate x_{k+1} by minimizing over the line passing through x_{k-1} and \hat{x}_k . *The method is equivalent to CG for a quadratic objective function.*

Krylov Optimization

- ▶ Conjugate gradient (CG) finds the minimizer of $f(x) = \frac{1}{2}x^T A x b^T x$ (which satisfies optimality condition $Ax = b$) within the Krylov subspace of A:
	- ▶ It constructs Krylov subspace $\mathcal{K}_k(A, b) = \text{span}(b, Ab, \dots, A^{r-1}b)$ *.*
	- § *At the* k*th step conjugate gradient yields iterate*

$$
\bm{x}_k = ||\bm{b}||_2 \bm{Q}_k \bm{T}_k^{-1} \bm{e}_1,
$$

where Q_k *is an orthogonal basis for Krylov subspace* $\mathcal{K}_k(A, b)$ *and* $\boldsymbol{T_k} = \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k.$

 \blacktriangleright This choice of x_k minimizes $f(x)$ since

$$
\min_{\boldsymbol{x} \in \mathcal{K}_k(\boldsymbol{A}, \boldsymbol{b})} f(\boldsymbol{x}) = \min_{\boldsymbol{y} \in \mathbb{R}^k} f(\boldsymbol{Q}_k \boldsymbol{y})
$$
\n
$$
= \min_{\boldsymbol{y} \in \mathbb{R}^k} \boldsymbol{y}^T \boldsymbol{Q}_k^T \boldsymbol{A} \boldsymbol{Q}_k \boldsymbol{y} - \boldsymbol{b}^T \boldsymbol{Q}_k \boldsymbol{y}
$$
\n
$$
= \min_{\boldsymbol{y} \in \mathbb{R}^k} \boldsymbol{y}^T \boldsymbol{T}_k \boldsymbol{y} - ||\boldsymbol{b}||_2 \boldsymbol{e}_1^T \boldsymbol{y}
$$

is minimized by $\boldsymbol{y} = ||\boldsymbol{b}||_2 T_k^{-1} \boldsymbol{e}_1.$

Conjugate Gradient Method: Optimized Form

After initialization $x_0 = 0, r_0 = b, p_0 = r_0$, the kth iteration of CG computes

$$
\begin{aligned} \boldsymbol{q}_k &= \boldsymbol{A} \boldsymbol{p}_k \\ \alpha_k &= \frac{\boldsymbol{r}_k^T \boldsymbol{r}_k}{\boldsymbol{q}_k^T \boldsymbol{p}_k} \\ \boldsymbol{x}_{k+1} &= \boldsymbol{x}_k + \alpha_k \boldsymbol{p}_k \\ \boldsymbol{r}_{k+1} &= \boldsymbol{r}_k - \alpha_k \boldsymbol{q}_k \end{aligned}
$$

At this point if the residual norm ($||r_{k+1}||$) is small, terminate, otherwise prepare for next iteration,

$$
\boldsymbol{p}_{k+1} = \boldsymbol{r}_{k+1} + \frac{\boldsymbol{r}_{k+1}^T \boldsymbol{r}_{k+1}}{\boldsymbol{r}_k^T \boldsymbol{r}_k} \boldsymbol{p}_k
$$

See Jonathan Shewchuk 1994 notes on CG or James Demmel's book for the derivation of this form of the algorithm.

Conjugate Gradient Convergence Analysis

- Ein previous discussion, we assumed K_n is invertible, which may not be the case if A has $k < n$ distinct eigenvalues, however, then CG converges in $k - 1$ iterations (in exact arithmetic)
	- § *To prove this, we can analyze the 'minimizing' polynomials in the Krylov subspace in terms of the (real and positive) eigenvalues of* A
	- \blacktriangleright The approximate solution x_k obtained by CG after $k 1$ iterations is given by *minimizing* $z \in \mathcal{K}_k(A, b)$ *, which means* $z = \rho_{k-1}(A)b$ *for some polynomial* ρ_{k-1} *of degree* $k - 1$
	- § *Now, consider the residual*

$$
\boldsymbol{A}\boldsymbol{x}-\boldsymbol{b}=(\boldsymbol{A}\boldsymbol{\rho}_{k-1}(\boldsymbol{A})-\boldsymbol{I})\boldsymbol{b}
$$

Example 3 Choosing ρ_{k-1} as a polynomial interpolant so that $\rho_{k-1}(\lambda) = 1/\lambda$ for $\lambda \in \lambda(A)$, r esults in a zero residual since then $\rho_{k-1}(A) = A^{-1}.$

Round-off Error in Conjugate Gradient

- \triangleright CG provides strong convergence quarantees for SPD matrices in exact arithmetic
	- ▶ Classically, CG was viewed as a direct method, since its quaranteed to convergence in n iterations
	- § In practice, round-off error prevents CG from achieving this for realistic matrices, so CG was actually abandoned for a while due to being viewed as unstable
	- ► Later, it was realized that CG is highly competitive as an iterative method
- ▶ Due to round-off CG may stagnate / have plateaus in convergence
	- \blacktriangleright A formal analysis of round-off error² reveals that CG with round-off is equivalent to exact CG on a matrix of larger dimension, whose eigenvalues are clustered around those of A
	- \blacktriangleright Using this view, CG convergence plateaus may be explained by the polynomial q_k developing more and more zeros near the same eigenvalue of \boldsymbol{A}

²A. Greenbaum and Z. Strakos, SIMAX 1992

Preconditioning

► Convergence of iterative methods for $Ax = b$ depends on $\kappa(A)$, the goal of a preconditioner M is to obtain x by solving

$$
\boldsymbol{M}^{-1}\boldsymbol{A}\boldsymbol{x} = \boldsymbol{M}^{-1}\boldsymbol{b}
$$

with $\kappa(M^{-1}A)<\kappa(A)$

- \blacktriangleright need not form $M^{-1}A$ but only compute matrix-vector products $M^{-1}(Ax)$
- \blacktriangleright want $M^{-1}x$ to be easy to compute (easier than $A^{-1}x$)
- ► so generally one extracts some $M \approx A$ that is easy to solve linear systems with
- ▶ however, $M \approx A$ may be insufficient/unnecessary, primary goal is to improve conditioning to accelerate iterative methods, i.e., want $\kappa(M^{-1}A)\ll \kappa(A)$
- \blacktriangleright Common preconditioners select parts of A or perform inexact factorization
	- \blacktriangleright (block-)Jacobi preconditioner takes M to be (block-)diagonal of A
	- incomplete LU (ILU) preconditioners compute $M = LU \approx A$ (+pivoting)
	- E ILU variants constraint sparsity of L and U factors during factorization to be the same or not much more than that of A
	- § good problem-specific preconditioners are often available in practice and theory, applying also to problems beyond linear systems (eigenvalue problems, optimization, approximate graph algorithms)

Newton's Method

 \blacktriangleright Newton's method in n dimensions is given by finding minima of n -dimensional quadratic approximation using the gradient and Hessian of f :

$$
f(\boldsymbol{x}_k + \boldsymbol{s}) \approx \hat{f}(\boldsymbol{s}) = f(\boldsymbol{x}_k) + \boldsymbol{s}^T \nabla f(\boldsymbol{x}_k) + \frac{1}{2} \boldsymbol{s}^T \boldsymbol{H}_f(\boldsymbol{x}_k) \boldsymbol{s}.
$$

The minima of this function can be determined by identifying critical points $\mathbf{0} = \nabla \hat{f}(\mathbf{s}) = \nabla f(\mathbf{x}_k) + \mathbf{H}_f(\mathbf{x}_k)\mathbf{s},$

thus to determine s *we solve the linear system,*

$$
\boldsymbol{H}_f(\boldsymbol{x}_k)\boldsymbol{s} = -\nabla f(\boldsymbol{x}_k).
$$

Assuming invertibility of the Hessian, we can write the Newton's method iteration as

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \underbrace{\boldsymbol{H}_f(\boldsymbol{x}_k)^{-1} \nabla f(\boldsymbol{x}_k)}_s.
$$

Quadratic convergence follows by fixed point function analysis, beyond smoothness, a sufficient assumption is that $H_f(x^\ast)$ is SPD.

Nonlinear Least Squares

§ An important special case of multidimensional optimization is *nonlinear least squares*, the problem of fitting a nonlinear function $f_{\bm{x}}(t)$ so that $f_{\bm{x}}(t_i) \approx y_i$: For example, consider fitting $f_{\left[x_1,x_2\right]}(t)=x_1\sin(x_2t)$ so that

$$
\begin{bmatrix} f_{[x_1,x_2]}(1.5) \\ f_{[x_1,x_2]}(1.9) \\ f_{[x_1,x_2]}(3.2) \end{bmatrix} \approx \begin{bmatrix} -1.2 \\ 4.5 \\ 7.3 \end{bmatrix}.
$$

 \blacktriangleright We can cast nonlinear least squares as an optimization problem to minimize residual error and solve it by Newton's method:

Define residual vector function $r(x)$ so that $r_i(x) = y_i - f_x(t_i)$ and minimize

$$
\phi(\boldsymbol{x}) = \frac{1}{2} ||\boldsymbol{r}(\boldsymbol{x})||_2^2 = \frac{1}{2} \boldsymbol{r}(\boldsymbol{x})^T \boldsymbol{r}(\boldsymbol{x}).
$$

Now the gradient is $\nabla \phi(\boldsymbol{x}) = \boldsymbol{J}^T_{\boldsymbol{r}}(\boldsymbol{x}) \boldsymbol{r}(\boldsymbol{x})$ and the Hessian is

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}^T(\boldsymbol{x})\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}) + \sum_{i=1}^m r_i(\boldsymbol{x})\boldsymbol{H}_{r_i}(\boldsymbol{x}).
$$

Gauss-Newton Method

▶ The Hessian for nonlinear least squares problems has the form:

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}^T(\boldsymbol{x})\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}) + \sum_{i=1}^m r_i(\boldsymbol{x})\boldsymbol{H}_{r_i}(\boldsymbol{x}).
$$

The second term is small when the residual function $r(x)$ *is small, so approximate*

$$
\boldsymbol{H}_{\phi}(\boldsymbol{x}) \approx \hat{\boldsymbol{H}}_{\phi}(\boldsymbol{x}) = \boldsymbol{J}_{\boldsymbol{r}}^T(\boldsymbol{x})\boldsymbol{J}_{\boldsymbol{r}}(\boldsymbol{x}).
$$

§ The *Gauss-Newton* method is Newton iteration with an approximate Hessian:

$$
\boldsymbol{x}_{k+1} = \boldsymbol{x}_k - \hat{\boldsymbol{H}}_{\phi}(\boldsymbol{x}_k)^{-1}\nabla f(\boldsymbol{x}_k) = \boldsymbol{x}_k - (\boldsymbol{J}_r^T(\boldsymbol{x}_k)\boldsymbol{J}_r(\boldsymbol{x}_k))^{-1}\boldsymbol{J}_r^T(\boldsymbol{x}_k)\boldsymbol{r}(\boldsymbol{x}_k).
$$

Recognizing the normal equations, we interpret the Gauss-Newton method as solving linear least squares problems $J_r(x_k)s_k \cong r(x_k), x_{k+1} = x_k - s_k$.

Low Rank Matrix Approximation

- ▶ Given a matrix $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ seek rank $r < m, n$ approximation
	- \blacktriangleright Given by matrices $\boldsymbol{U} \in \mathbb{R}^{m \times r}$ and $\boldsymbol{V} \in \mathbb{R}^{n \times r}$ so

$$
\boldsymbol{A}\approx\boldsymbol{U}\boldsymbol{V}^T
$$

- \blacktriangleright Reduces memory footprint and cost of applying A from mn to $mr + nr$
- \blacktriangleright This factorization is nonunique, $\boldsymbol{U}\boldsymbol{V}^T = (\boldsymbol{U}\boldsymbol{M})(\boldsymbol{V}\boldsymbol{M}^{-T})^T$
- ▶ Eckart-Young (optimal low-rank approximation by SVD) theorem
	- § *Truncated SVD approximates* A *as*

$$
\boldsymbol{A} \approx \tilde{\boldsymbol{A}} = \sum_{i=1}^r \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^T
$$

where $\sigma_1, \ldots, \sigma_r$ *are the largest* r *singular values, while* u_i *and* v_i *are the associated left and right singular vectors*

§ *Eckart-Young theorem demonstrates that the truncated SVD minimizes*

$$
\underbrace{\|\mathbf{A} - \tilde{\mathbf{A}}\|_2}_{\sigma_{r+1}} \quad \text{and} \quad \underbrace{\|\mathbf{A} - \tilde{\mathbf{A}}\|_F^2}_{\sum_{i=r+1}^{\min(m,n)} \sigma_i^2}
$$

Rank Revealing Matrix Factorizations

- ▶ Computing the SVD
	- \blacktriangleright *Can compute full SVD with* $O(mn \min(m, n))$ cost via bidiagonalization
		- § *unconditionally stable and accurate*
		- § *inefficient for low* r *or if* A *is sparse*
	- § *Given any low-rank approximation composed of* U *and* V *, compute QR of each* and SVD of product of \boldsymbol{R} factors to obtain SVD with total cost $O((m+n) r^2)$
- \triangleright OR with column pivoting
	- § *By selecting columns of largest norm in the trailing matrix during QR factorization, we obtain a pivoted factorization with permutation matirx* P

$AP = OR$

- § *Truncating this factorization can be done after applying* r *Householder reflectors (or another OR algorithm on* r *columns), with cost* $O((m + n)r)$
- § *Approximation is somewhat suboptimal in theory, but in practice almost always as accurate as truncated SVD*

Simultaneous and Orthogonal Iteration

- ▶ Orthogonal iteration computing many eigenvectors at once in an iterative way
	- \blacktriangleright Initialize X_0 \in $\mathbb{R}^{n\times k}$ to be random, orthogonalize it to obtain Q_0 , then iterate via

$$
\boldsymbol{Q}_{i+1}\boldsymbol{R}_{i+1} = \boldsymbol{A}\boldsymbol{Q}_{i}
$$

- \blacktriangleright *For random starting quess, with high probability,* $\lim_{i\to\infty}$ *span* $(X_i) = \mathbb{S}$ *where* \mathbb{S} *is the subspace spanned by the* k *eigenvectors of* A *with the largest eigenvalues in magnitude.*
- § *Can use this to compute the right singular vectors of matrix* M *by using* $\boldsymbol{A} = \boldsymbol{M}^T \boldsymbol{M}$ (no need to form \boldsymbol{A} , just multiply \boldsymbol{Q}_i by \boldsymbol{M}^T then \boldsymbol{M}).
- \blacktriangleright QR has cost $O(nk^2)$ while product has cost $O(n^2k)$ (or more generally, k *products with* A*) per iteration.*
- \blacktriangleright OR iteration performs orthogonal iteration implicitly when $n = k$

Orthogonal Iteration Convergence

- Effer A has distinct eigenvalues and R_i has positive decreasing diagonal, the *i*th column of Q_i converges to the *i*th Schur vector of A linearly with rate $\max(|\lambda_{i+1}/\lambda_i|, |\lambda_i/\lambda_{i-1}|).$
	- § *Convergence of the first column of* Qⁱ *follows by analogy to power iteration*
	- § *Span of first* j *columns of* Qⁱ *converges to the span of the first* j *Schur vectors with rate* $|\lambda_{i+1}/\lambda_i|$
	- § *Hence orthogonal iteration converges similarly to* k *instances of inverse iteration with shifts chosen near the* k *largest magnitude eigenvalues*
	- ▶ *Block-Krylov methods, which consider span* $\{X_0, AX_0, \ldots, A^{k-1}X_0\}$ provide *some improvement over orthogonal iteration for low rank SVD (see works by Ming Gu and others)*

Randomized SVD

- \triangleright Orthogonal iteration for SVD can also be viewed as a randomized algorithm
	- \blacktriangleright Suppose that we have an exact low-rank factorization $\bm A = \bm U \bm \Sigma \bm V^T$ with $\Sigma \in \mathbb{R}^{r \times r}$
	- \blacktriangleright If $\boldsymbol{Q}^{(0)}$ is a random orthogonal matrix, so is $\boldsymbol{V}^T\boldsymbol{Q}^{(0)}$
	- \blacktriangleright Consequently, $AQ^{(0)}$ is a set of r random linear combinations of columns of $U\Sigma$
	- \blacktriangleright Further, after the QR $\boldsymbol{Q}^{(1)}\boldsymbol{R}^{(1)} = \boldsymbol{A}\boldsymbol{Q}^{(0)},$

$$
\boldsymbol{U}\boldsymbol{U}^T=\boldsymbol{Q}^{(1)}\boldsymbol{Q}^{(1)T}
$$

 h olds with probability 1 (suffices to have $A Q^{(0)}$ full rank)

- \blacktriangleright Consequently, we can compute SVD of $\boldsymbol{Q}^{(1)T}\boldsymbol{A}$ (with cost $O(nr^2)$) and recover U by premultiplying the computed left singular vectors by $Q^{(1)}$
- § *When* A *is not exactly low-rank, span of leading singular vectors can be* ϵ aptured by oversampling (e.g., selecting each $\bm{Q}^{(i)}$ to have $r + 10$ columns)
- \blacktriangleright *Initial guess* $Q^{(0)}$ need not be orthogonal (Gaussian random performs well, *structured pseudo-random enables* $O(mn \log n)$ *complexity for one-shot randomized SVD), but better accuracy is obtained with orthogonality*

Generalized Nyström Algorithm

- ▶ The generalized Nyström algorithm provides an efficient way of computing a low-rank factorization given an approximation of its span³
	- \blacktriangleright Given matrices $\bm{S}_1 \in \mathbb{R}^{k \times n}$ and $\bm{S}_2 \in \mathbb{R}^{k \times m}$ the rank k factorization of a matrix $A \in \mathbb{R}$ *m* \times *n is obtained via*

$$
\hat{\bm{A}}_k=\bm{A}\bm{S}_1^T(\bm{S}_2\bm{A}\bm{S}_1^T)^\dagger\bm{S}_2\bm{A}
$$

- \blacktriangleright *The truncated SVD is recovered if* S_1 *and* S_2 *contain the largest eigenvectors*
- \blacktriangleright Generally, we expect $\boldsymbol{S_2}\boldsymbol{A}\boldsymbol{S_1^T}$ to be full rank, otherwise factorization is *rank-deficient*
- \blacktriangleright If $\bm{S}_2\bm{A}\bm{S}_1^T$ is invertible, $\forall \bm{u}, \bm{A}\bm{S}_1^T\bm{u} = \hat{\bm{A}}_k\bm{S}_1^T\bm{u}$
- \blacktriangleright *The skeleton decomposition is obtained by choosing both* S_1 *and* S_2 *to be sampling matrices (each row being a unit vector)*
- \blacktriangleright *Instead,* S_1 *and* S_2 *may be chosen as random 'sketch matrices'*
- § *The interpolative decomposition is obtained by choosing either of the two to be a sampling matrix.*

³Nakatsukasa, Yuji, Fast and stable randomized low-rank matrix approximation, 2020.

Analysis of Generalized Nyström Algorithm

 \blacktriangleright Consider $\boldsymbol{F_1} = \boldsymbol{A}\boldsymbol{S}_1^T$ and $\boldsymbol{F_2} = \boldsymbol{A}\boldsymbol{S}_2^T$, derive the minimizer \boldsymbol{Z} to

$$
\|\bm A - \bm F_1\bm Z\bm F_2^T\|_F
$$

$$
\begin{aligned} \text{vec}(\boldsymbol{A} - \boldsymbol{F_1}\boldsymbol{Z}\boldsymbol{F_2^T}) &= \text{vec}(\boldsymbol{A}) - \text{vec}(\boldsymbol{F_1} \otimes \boldsymbol{F_2}) \,\text{vec}(\boldsymbol{Z}) \\ &\text{vec}(\boldsymbol{Z}) = \text{vec}(\boldsymbol{F_1} \otimes \boldsymbol{F_2})^+ \,\text{vec}(\boldsymbol{A}) \\ &= \text{vec}(\boldsymbol{F_1^+} \otimes \boldsymbol{F_2^+}) \,\text{vec}(\boldsymbol{A}) \\ &= \boldsymbol{F_1^+} \boldsymbol{A} (\boldsymbol{F_2^+})^T \end{aligned}
$$

- \blacktriangleright The generalized Nyström algorithm may be interpreted as applying a two-sided oblique projection of A
	- \blacktriangleright Optimal solution above is given by orthogonal projections $F_1F_1^+$ and $F_2F_2^+$
	- § *Generalized Nystrom approximation instead uses the oblique projections ¨*

$$
\boldsymbol{P}_1 = \boldsymbol{A}\boldsymbol{S}_1(\boldsymbol{S}_2\boldsymbol{A}\boldsymbol{S}_1^T)^+\boldsymbol{S}_2, \boldsymbol{P}_2 = \boldsymbol{S}_1^T(\boldsymbol{S}_2\boldsymbol{A}\boldsymbol{S}_1^T)^+\boldsymbol{S}_2\boldsymbol{A}
$$

where $P_1P_1 = P_1$ and $P_2P_2 = P_2$, while the approximation obtained via P_1AP_2