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Matrices and Tensors

» What is a matrix?

> A collection of numbers arranged into an array of dimensions m x n, e.g.,
M e RM™*xn

> Alinear operator f(x) = M«
> A bilinear form T My

» What is a tensor?

> A collection of numbers arranged into an array of a particular order, with
dimensions | x m x n x ---, e.g., T € R>™*" js order 3

> A multilinear operator z = f(x,y)
z = th’jkxjyk
gk

> A multilinear form 33, .  tijewiy; 2



Matrix Norms
» Properties of matrix norms:

|A] =0
|Aj=0 = A=0
oAl = [af - [A]

|A+ B| < |A|+ |B| (triangle inequality)

» Frobenius norm:

1/2
Al = (Za?j)

Z’Mj
» Operator/induced/subordinate matrix norms:
For any vector norm |-||,, the induced matrix norm is

Al = Ax x| = Ax
IA], Ig%\\ I,/ |, ”gﬁjflll I,

Demo: Matrix norms


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/02-linear-systems/Matrix norms.html

Existence of SVD
» Consider any maximizer x; € R" with |z, = 1 to ||Az|,
Let y, = Axy/ | Az |, and oy = yI Az, = | Az, then consider any
maximizer x5 of
H(A - 01y1~’E,’1F)$2H2 .

We can see that 1 1 x5 since, otherwise, we have s = ax1 + Ty With
o L xy and |z2|, < ||z2l, and

H (A — alylmr{)(aml + 532)“2 = ||(A — 01y1${)i2“2 .
Hence we have a contradiction, since

(A = oryna] s, < (1/[Za2ll,) |(A — o1gna] )Eo|, -
More generally, we can see that any maximizer x;,1 to

I(A=T[yr - wi [©1 - @]

20

T
)Zit1lly

is orthogonal to x1, ..., x; and similar for y; 1.



Singular Value Decomposition
» The singular value decomposition (SVD)
We can express any matrix A as
A=UzvT
where U and V are orthogonal, and X is square nonnegative and diagonal,
Omax
P
Omin

The columns of U and V are left and right singular vectors of A, i.e.,

T

%

T
A'Ui = 0;U;, u; A= o;v

» Condition number in terms of singular values
> We have that | Ay = omex and if A=1 exists, |[A7 s = 1/omin
> Consequently, k(A) = |Al2|A~" |2 = omax/Tmin



Visualization of Matrix Conditioning

{I:fEERQ‘,HfE\b:l} > {Az:x € R?, |||, = 1}

A

E(A) = O'max/o'min

(.

v

”A”Q — Omax
1/[[A7 2 = omin

Omin

A=U |:O'rnax



Matrix Condition Number

» The matrix condition number x(A) is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

> The max distance to center is given by the vector maximizing max|q|—, | Ax|,.

> The min distance to center is given by the vector minimizing
minjg) -y [ Az|, = 1/(maxjz)—1 |A™"2],)

> Thus, we have that k(A) = |A|, | A7},

» The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y + 6y = A(x + éx), assume ||x|, = 1

> In the worst case, |y|, is minimized, that is |y|, = 1/|A™Y|,
> In the worst case, |dy|, is maximized, that is |dy|, = | Al [|0y],

> So [0y, /|yl is at most x(A) o], / |,



Linear Systems

» Given a square matrix A € R™*™ with rank n, consider solving Ax = b given b
» The SVD allows explicit inversion of A

Al =vy 1T

» However, Gaussian elimination is more computationally efficient

> Can factorize arbitrary A as A = PLU for permutation matrix P and
triangular L, U

> For symmetric A LDLT factorization is A = PLDL"™ PT, where D has diagonal
entries of 2-by-2 anti-diagonal symmetric blocks

» If positive definite, Cholesky requires no pivoting/permutation

» Suffices to solve linear systems in O(n?) cost using triangular solve

» Given a factorization of A, solving a system with A + uv” has cost O(n?) via
the Sherman-Morrison-Woodbury formula



Linear Least Squares
» Find * = argmin . | Az — b||, where A e R"*™:
Since m = n, the minimizer generally does not attain a zero residual Ax — b.
We can rewrite the optimization problem constraint via

&* = argmin | Az — b|5 = argmin [(Aw —b)7(Ax — b)]

xeR™ xeR

» Giventhe SVD A = UXVT we have z* = VXTUT b, where ' contains the
—

At
reciprocal of all nonzeros in 3, and more generally 1 denotes pseudoinverse:

» The minimizer satisfies USV Ta* =~ b and consequently also satisfies
Sy*~d wherey* =VTax*andd = U"b.

> The minimizer of the reduced problem is y* = X'd, so y; = d;/o; for
ie{l,...,ntandy; =0forie{n+1,...,m}.



. Demo: Normal equations vs Pseudoinverse
Normal E quations Demo: Issues with the normal equations

» Normal equations are given by solving AT Az = AT'b:
If AT Ax = ATb then

UzvhHTusvTiz = (U=vTTb
»Tyvie = xTUuTs
Vig = (2T 127Uy = =TUTb
xz=VIUTb =2*

» However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm

Generally we have k(AT A) = k(A)? (the singular values of AT A are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.


https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html

Solving the Normal Equations

» If A is full-rank, then AT A is symmetric positive definite (SPD):
» Symmetry is easy to check (AT A)T = AT A.
» A being full-rank implies o, > 0 and further if A = UX VT we have

ATA=VT2V

which implies that rows of V are the eigenvectors of AT A with eigenvalues X2
since ATAVT = vTx2

» Since AT A is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA =LL"”



QR Factorization
» If A is full-rank there exists an orthogonal matrix Q and a unique
upper-triangular matrix R with a positive diagonal such that A = QR
» Given ATA = LL”, we can take R = L™ and obtain Q = AL~ since
L~ YAT AL~T = I implies that Q has orthonormal columns.
KN
» A reduced QR factorization (unique part of general QR) is defined so that
Q € R™*™ has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q € R™*™ and R € R™*", but since R is upper
triangular, the latter m — n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q the upper-triangular block of R, R giving A = QR.
» We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAz=A"p = RT QTQ Rz = RTQTb = Rx-= QTb
——
I



Computing the QR Factorization

» The Cholesky-QR algorithm uses the normal equations to obtain the QR
factorization

» Compute ATA = LLT, take R = L, and solve for Q triangular linear systems
LQT = AT

» If Aism x n, forming AT A has cost mn?, computing Cholesky factorization
has cost (2/3)n?, and solving the triangular systems (if Q is needed) costs mn?,
yielding total cost 2mn? + (2/3)n3

» However, this method is unstable since AT A is ill-conditioned. This is
addressible by iterating on the computed (nearly-orthogonal) Q factor
(CholeskyQR2).

» Orthogonalization-based methods are most efficient and stable for QR
factorization of dense matrices

> Apply a sequence of orthogonal transformations Q1, . .., Q. to reduce A to
triangular form (Q;---Qx)TA =R

» Householder QR uses rank-1 perturbations of the identity matrix (reflectors)
Q: = I — 2u;ul to zero-out each sub-column of A

> Givens rotations zero-out a single entry at a time

» Both approaches have cost O(mn?) with similar constant to Cholesky-QR



Householder orthogonalization

-—>

‘_______



Eigenvalue Decomposition
» If a matrix A is diagonalizable, it has an eigenvalue decomposition

A=XDXx!
where X are the right eigenvectors, X ~! are the left eigenvectors and D are
eigenvalues
AX = [A$1 s Amn] =XD = [dnscl s dnnmn] .

» If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

» More generally, any normal matrix, A" A = AAH, has unitary eigenvectors.
» A and B are similar, if there exist Z such that A = ZBZ!
» Normal matrices are unitarily similar (Z—' = ZH) to diagonal matrices

» Symmetric real matrices are orthogonally similar (Z—' = Z™) to real diagonal
matrices

» Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices

Invertible similarity transformationsY = X AX !

matrix (A) reduced form (Y)
arbitrary bidiagonal
diagonalizable | diagonal

Unitary similarity transformations Y = UAU "

matrix (A)

reduced form (Y')

arbitrary

triangular (Schur)

normal

diagonal

Hermitian

real diagonal

Orthogonal similarity transformations Y = QAQ”

matrix (A) reduced form (Y')
real Hessenberg

real symmetric | real diagonal

real SPD real positive diagonal



Field of Values
» For any square matrix A and vector x the Rayleigh quotient is

xH Ax

zHe

pa(x) =

» Its magnitude is bounded by the singular values as

1/[Aly" < pa(@)l < |Al,

» If 2 is an eigenvector of A, so Az = \xz or x7 A = \zf, then

pa(x) = A

» The set Fa = {pa(x) : ¢ € C", x # 0} is the field of values of A



Field of Values and Eigenvalues
» Clearly any eigenvalue X of Aisin Fu
3

» For the matrix A = | 5| Fa is' .

11

» The field of values of a normal matrix is easy to characterize
» If Ais normal, F 4 is the convex hull of the eigenvalues.
» If A is Hermitian and positive definite, Fa = [Omin, Omax]

» In general, eigenvectors are obtained from critical points of the Rayleigh
qguotient on the unit circle

La(z,)\) =z Az + \(1 — zfx)

2Ax — 2)\93} 0,

"Credit to https://www.chebfun.org/examples/linalg/FieldOfValues.html


https://www.chebfun.org/examples/linalg/FieldOfValues.html

Singular Vectors as Critical Points

» Like eigenvectors, we can also derive singular vectors from an optimization
(critical point) perspective

> Again, consider the critical points of the Lagrangian function of an optimization
problem on the unit-sphere,

La(u,v,A1,\s) = 2uf Av + A1(1— uHu) + X2 (1 — v w)

2Av — 2\ u

2474 — 250 ~0
1—ufu o
1—vHy

VEA('U/, v, >\1a )‘2) =

» At a critical point, we can see that \1 = \s, since u Av = \; = \a.



Matrix Functions

» Consider a polynomial p, for a diagonalizable matrix A = XDX 1,

p(A) = Xp(D)X ™!

deg(p) - deglp) i
p(A) = Z GA' = Ci H XDx!
i=0 i=0 =1
deg(p)

A deg(p) A
= XD X! = X( Z c,;D’)X_l
=0 1=0

» The above definition readily extends to other analytic functions f, but
non-diagonalizable matrices require a more sophisticated definition



Crouzeix’s conjecture

» So far, we have seen close connections between the matrix 2-norm and
singular values, and between the Rayleigh quotient and the eigenvalues

» An important open problem in numerical analysis that relates the norm with
the Rayleigh quotient is Crouzeix’s conjecture

» For any polynomial p and complex matrix A,

A, <2
Ip(4)], < 2 max ()

> The conjecture is known to hold for some subclasses of matrices and with
constant 11.08 instead of 2 (Crouzeix’s theorem)

> If valid, the bound of 2 is tight, including for p(A) = A, by choosing A = [8 (1)]



Computing Eigenvalue and Singular Value Decompositions

» Direct methods for eigenvalue problems start by reducing the matrix to
upper-Hessenberg form

> Seek a sequence of unitary similarity transformations
H=Q - Q1AQT ---Qf so that H is zero below the first subdiagonal
(upper-Hessenberg)

> Can pick each Q; as a Householder transformation acting on the last n — i rows

» O(n3) cost to reduce to upper-Hessenberg or tridiagonal if symmetric

> To obtain singular vectors, can work with AT A or perform ’bidiagonal
reduction’

> If matrix is sparse, fill may be introduced

» Iterative methods are generally based on products with the matrix

> Power iteration converges to the largest eigenvalue eigenvectors of A

> Convergence rate is linear and depends on ratio of two largest eigenvalues

» Integrating diagonal shifts and inversion yields other methods: inverse iteration,
Rayleigh-quotient iteration

> Most iterative methods involve only products with A or a related matrix



Introduction to Krylov Subspace Methods
» Krylov subspace methods work with information contained in the n x k matrix

KkZ[d}O Axg --- Ak_lmo]

We seek to best use the information from the matrix vector product results
(columns of K},) to solve eigenvalue problems.
» Assuming K, is invertible, the matrix K, ' AK,, is a companion matrix C:

Letting kY — Ai~lg we observe that
AK, = AR AR AR =[R2 kY AR

therefore premultiplying by K,! transforms the first n — 1 columns of AK,,
into the last n — 1 columns of I,

K;lAan[Kglkﬁf) e K K,;lAkSL")]

:[62 e ep KglAk,(ln)]



Krylov Subspaces

» Given Q. R, = K;, we obtain an orthonormal basis for the Krylov subspace,

Ki(A,xo) = span(Qy) = {p(A)xo : deg(p) < k},
where p is any polynomial of degree less than k.

» The Krylov subspace includes the k£ — 1 approximate dominant eigenvectors
generated by k — 1 steps of power iteration:
> The approximation obtained from k — 1 steps of power iteration starting from x
is given by the Rayleigh-quotient of y = AFx,,.
> This vector is within the Krylov subspace, y € K.(A, xy).

> Consequently, Krylov subspace methods will generally obtain strictly better
approximations of the dominant eigenpair than power iteration.



Rayleigh-Ritz Procedure

» The eigenvalues/eigenvectors of H, are the Ritz values/vectors:

H,=XDX™!
eigenvalue approximations based on Ritz vectors X are given by Q. X.
» The Ritz vectors and values are the ideal approximations of the actual
eigenvalues and eigenvectors based on only H;, and Qy:

Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value Amax(Hy},) will be the maximum Rayleigh quotient of any vector in
Ky = span(Qy,),

z! Ax ¥ QI AQy _ max y Hy

max T = Imax T T
zespan(Qy) T T y#0 Yy y#0 Yy

= )\max(Hk:)a

which is the best approximation to Amgx(A) = maxy.o a’ Az gy qilable in Kp.

T

The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Arnoldi Iteration

> Arnoldi iteration computes the ith column of H,, h; and the ith column of
Q. directly using the recurrence Agq; = Quhi = Y1) hjiq;

> Note that
a/ Agq; = ¢} (Q.H,Q!)q; = el H,e; = hjj.

> The Arnoldi algorithm computes q; 1 from qy, ..., q; by first computing
u; = Agq; then orthogonalizing,

i
T
Giprhivri = wi— Y, qihji,  hji = q) w;
J=1

then computing the norm of the vector to obtain h;1 ;, yielding the ith column
of H,,



Multidimensional Optimization
» Minimize f(x)
> In the context of constrained optimization, also have equality and or inequality
constraints, e.g., Ax =borx >0

> Unconstrained local optimality holds if V f(x*) = 0 and H¢(x*) is positive
semi-definite

> Reduces to solving nonlinear equations via optimality condition

> Unconstrained local optimality conditions are looser, need the gradient to be
zero or positive in all unconstrained directions at x*

> The condition V f(x*) = 0 implies poor conditioning, perturbations that change
the function value in the kth digit can change the sollution in the (k/2)th digit
> Quadratic optimization f(z) = 27 Az — bTx

> Quadratic optimization problems can provide local approximations to general
nonlinear optimization problems via Newton’s method (where A is the Hessian
and b" is the gradient)

> Equivalent to solving linear system Ax = b by optimality condition
> Accordingly, conditioning relative to perturbation in b is k(A)



Basic Multidimensional Optimization Methods
» Steepest descent: minimize f in the direction of the negative gradient:

Tpy1 = Tp — 4V f(Tk)
such that f(xy+1) = ming, f(zr — arVf(xk)), i.e. perform a line search
(solve 1D optimization problem) in the direction of the negative gradient.

> Given quadratic optimization problem f(z) = =" Az + b"x where A is
symmetric positive definite, the error e;, = x;, — x* satisfies

Umax(A) — Omin (A)

Omax(A) + omin(A)

» When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

» Convergence rate depends on the conditioning of A, since
Omax(A) — omin(A) _ k(A) -1
Omax(A) + omin(A)  k(A)+1°

llex+1lla = €£+1Aek+1 = llex||a




Gradient Methods with Extrapolation

» We can improve the constant in the linear rate of convergence of steepest
descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction x;, — x;_1):

Tpr1 = T — oV [(xp) + Be(Tr — Tr1)

» The heavy ball method, which uses constant «;, = o and 5, = 3, achieves
better convergence than steepest descent:

lexsalla = meru

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method

» The conjugate gradient method is capable of making the optimal (for a
quadratic objective) choice of oy, and ), at each iteration of an extrapolation
method:

(o, Br) = argmin {f (:ck — o, Vf(xg) + Bk — a:k_l))}

ag,Bk

> For SPD quadratic programming problems, conjugate gradient is an optimal first
order method, converging in n iterations.

» It implicitly computes Lanczos iteration, searching along A-orthogonal
directions at each step.

» Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate &, from xy,.
2. Generate x;1 by minimizing over the line passing through x;_, and &;.
The method is equivalent to CG for a quadratic objective function.



Krylov Optimization

» Conjugate gradient (CG) finds the minimizer of f(z) = 12”7 Az — b"x (which

satisfies optimality condition Az = b) within the Krylov subspace of A:

» It constructs Krylov subspace Ki(A,b) = span(b, Ab, ..., A"~ 'b).
> At the kth step conjugate gradient yields iterate

zi, = ||b][2Qi T} e,

where Q. is an orthogonal basis for Krylov subspace K\ (A, b) and
T, = QL AQy.
> This choice of x\, minimizes f(x) since

min x) = min
et f(x) min f(Qry)
= min y" Qf AQry — b" Qry
yeRk
= min y" Ty — ||bl|2e] y
yeRF

is minimized by y = ||b||T} "e:.



Conjugate Gradient Method: Optimized Form

After initialization xg = 0, o = b, pg = rg, the kth iteration of CG computes

qr = Apy
T
T, Tk
ap = ]%
q;. Pk

Tp4+1 = Tk + QP
T+l = Tk — QgQqg

At this point if the residual norm (||rx.1|) is small, terminate, otherwise prepare
for next iteration,

TT Tk+1
Pr+1 = Tr41 + k;+%7+
rk Tk
See Jonathan Shewchuk 1994 notes on CG or James Demmel’s book for the
derivation of this form of the algorithm.



Conjugate Gradient Convergence Analysis

» In previous discussion, we assumed K, is invertible, which may not be the
case if A has k < n distinct eigenvalues, however, then CG converges in
k — 1 iterations (in exact arithmetic)

> To prove this, we can analyze the ‘minimizing‘ polynomials in the Krylov
subspace in terms of the (real and positive) eigenvalues of A

> The approximate solution x;, obtained by CG after k — 1 iterations is given by
minimizing z € Ky (A, b), which means z = py_1(A)b for some polynomial pj_1
of degree k — 1

> Now, consider the residual

Az — b= (Ap1(A) — Db

» Choosing pr—1 as a polynomial interpolant so that pi—1(\) = 1/X for A € \(A),
results in a zero residual since then p;,_1(A) = A~L.



Round-off Error in Conjugate Gradient

» CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

> Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

» In practice, round-off error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

> Later, it was realized that CG is highly competitive as an iterative method

» Due to round-off CG may stagnate / have plateaus in convergence

> A formal analysis of round-off error? reveals that CG with round-off is
equivalent to exact CG on a matrix of larger dimension, whose eigenvalues are
clustered around those of A

> Using this view, CG convergence plateaus may be explained by the polynomial
qr. developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Preconditioning

» Convergence of iterative methods for Az = b depends on x(A), the goal of a
preconditioner M is to obtain x by solving

M Az =M"'b

with k(M1 A) < k(A)

» need not form M ~! A but only compute matrix-vector products M ~!(Azx)

» want M 'z to be easy to compute (easier than A~ 'x)

> so generally one extracts some M ~ A that is easy to solve linear systems with

> however, M ~ A may be insufficient/unnecessary, primary goal is to improve
conditioning to accelerate iterative methods, i.e., want k(M 1t A) « x(A)

» Common preconditioners select parts of A or perform inexact factorization

» (block-)Jacobi preconditioner takes M to be (block-)diagonal of A

> incomplete LU (ILU) preconditioners compute M = LU ~ A (+pivoting)

» ILU variants constraint sparsity of L and U factors during factorization to be
the same or not much more than that of A

» good problem-specific preconditioners are often available in practice and
theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)



Newton’s Method

» Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f:

Pl + ) ~ Fs) = fla) + 5TV (i) + 3 o" Hyew)s
The minima of this function can be determined by identifying critical points
0 = Vf(s) = Vf(ax) + Hy(xs)s,
thus to determine s we solve the linear system,
Hy(wp)s = =V f(wp).

Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as
Tpi1 = x — Hy(xp) 'V ().
S
Quadratic convergence follows by fixed point function analysis, beyond
smoothness, a sufficient assumption is that H(x*) is SPD.




Nonlinear Least Squares
» An important special case of multidimensional optimization is nonlinear least
squares, the problem of fitting a nonlinear function f,(¢) so that f(t;) ~ v;:

For example, consider fitting fi,, .,)(t) = z1sin(zat) so that

:131,332 ( ) —1.2
zm 1(L9) | ~ | 45
l‘17m‘2 ( ) 73

» We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:

Define residual vector function r(x) so that r;(x) = y; — f«(t;) and minimize
1 1

o) = 5lIr(@)I = ;

Now the gradient is V¢(x) = JI' (x)r(x) and the Hessian is

™

Hy(x) = I} (x)Jp(x) + > ri(z)H
=1

r(x)lr(x).



Gauss-Newton Method

» The Hessian for nonlinear least squares problems has the form:
m
Hy(@) = J} (@), () + ), ri(x)H,, ().
i=1
The second term is small when the residual function r(x) is small, so
approximate
Hy(z) ~ Hy(x) = I} () ().
» The Gauss-Newton method is Newton iteration with an approximate Hessian:

@1 =z, — Hy(xn) 'V () = 2 — (I (@) Tr (1) 7' I, ()7 (1)

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems J,(xy)sk = r(xy), k11 = T — Sk



Low Rank Matrix Approximation

» Given a matrix A € R™*" seek rank r < m,n approximation

> Given by matrices U e R™*" and V € R™"*" so
A~UVT

> Reduces memory footprint and cost of applying A from mn to mr + nr
» This factorization is nonunique, UVT = (UM)(VM~-T)T

» Eckart-Young (optimal low-rank approximation by SVD) theorem
> Truncated SVD approximates A as

r

A T

Ax A= Z oiu;;
i=1

where o1, ...,0, are the largest r singular values, while w; and v; are the
associated left and right singular vectors
> Eckart-Young theorem demonstrates that the truncated SVD minimizes

|A—Aly and |A-A|}

Or41 min(m,n) o
Zi=r+l 3



Rank Revealing Matrix Factorizations

» Computing the SVD
> Can compute full SVD with O(mmn min(m,n)) cost via bidiagonalization

> unconditionally stable and accurate
> inefficient for low r or if A is sparse
> Given any low-rank approximation composed of U and V', compute QR of each

and SVD of product of R factors to obtain SVD with total cost O((m + n)r?)

» QR with column pivoting
> By selecting columns of largest norm in the trailing matrix during QR
factorization, we obtain a pivoted factorization with permutation matirx P

AP = QR

» Truncating this factorization can be done after applying r Householder
reflectors (or another QR algorithm on r columns), with cost O((m + n)r)
» Approximation is somewhat suboptimal in theory, but in practice almost always

as accurate as truncated SVD



Simultaneous and Orthogonal Iteration
» Orthogonal iteration computing many eigenvectors at once in an iterative
way
» Initialize X, € R"** to be random, orthogonalize it to obtain Q,, then iterate via
QiniRiy1 = AQ;

For random starting guess, with high probability, lim;_,., span(X;) = S where S
is the subspace spanned by the k eigenvectors of A with the largest eigenvalues
in magnitude.

v

v

Can use this to compute the right singular vectors of matrix M by using
A = MTM (no need to form A, just multiply Q; by M™ then M ).

QR has cost O(nk?) while product has cost O(n?k) (or more generally, k
products with A) per iteration.

QR iteration performs orthogonal iteration implicitly when n = k

v

v



Orthogonal Iteration Convergence

» If A has distinct eigenvalues and R; has positive decreasing diagonal, the
jth column of Q; converges to the jth Schur vector of A linearly with rate

max(|Aj+1/Az], [Aj/Aj-1])-
» Convergence of the first column of Q; follows by analogy to power iteration
> Span of first j columns of Q; converges to the span of the first j Schur vectors
with rate ‘)\j+1/)\]‘|
> Hence orthogonal iteration converges similarly to k instances of inverse
iteration with shifts chosen near the k largest magnitude eigenvalues

> Block-Krylov methods, which consider span{ Xy, AXy, ..., A*~1 X} provide
some improvement over orthogonal iteration for low rank SVD (see works by
Ming Gu and others)



Randomized SVD

» Orthogonal iteration for SVD can also be viewed as a randomized algorithm

>

Suppose that we have an exact low-rank factorization A = UXVT with

2 e R’I"XY‘

If Q) js a random orthogonal matrix, so is VT Q(®)

Consequently, AQ is a set of r random linear combinations of columns of UX
Further, after the QR QW R = AQ®),

vuT = Q(l)Q(l)T

holds with probability 1 (suffices to have AQ® full rank)

Consequently, we can compute SVD of Q)™ A (with cost O(nr?)) and recover
U by premultiplying the computed left singular vectors by Q")

When A is not exactly low-rank, span of leading singular vectors can be
captured by oversampling (e.g., selecting each Q) to have r + 10 columns)
Initial guess Q) need not be orthogonal (Gaussian random performs well,
structured pseudo-random enables O(mnlogn) complexity for one-shot
randomized SVD), but better accuracy is obtained with orthogonality



Generalized Nystrom Algorithm

» The generalized Nystrom algorithm provides an efficient way of computing a
low-rank factorization given an approximation of its span3

>

Given matrices S; € R¥*™ and S, € R¥*™ the rank k factorization of a matrix
A € Rm x n is obtained via

A, = AST(S,A8T)1S,A

The truncated SVD is recovered if S; and S, contain the largest eigenvectors
Generally, we expect S; AST to be full rank, otherwise factorization is
rank-deficient

If S, AST is invertible, Vu, ASTu = A, STu

The skeleton decomposition is obtained by choosing both S, and S, to be
sampling matrices (each row being a unit vector)

Instead, S, and S, may be chosen as random ‘sketch matrices’

The interpolative decomposition is obtained by choosing either of the two to be
a sampling matrix.

3Nakatsukasa, Yuji, Fast and stable randomized low-rank matrix approximation, 2020.



Analysis of Generalized Nystréom Algorithm
» Consider F} = AST and F» = ASI, derive the minimizer Z to

|A~FZF)|F

vec(A — FLZF]) = vec(A) — vec(Fy ® Fy) vec(Z)
vec(Z) = vec(F) @ F»)* vec(A)
= vec(F;" @ F,")vec(A)
= F1+A(F2+)T

» The generalized Nystrom algorithm may be interpreted as applying a
two-sided oblique projection of A

» Optimal solution above is given by orthogonal projections FyF;" and FyF,
> Generalized Nystrém approximation instead uses the oblique projections

P, = AS (S, AST)* Sy, P, = ST(S,AST)*8,A
where P, P, = P, and P, P, = P,, while the approximation obtained via P, AP,
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