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Matrices and Tensors
§ What is a matrix?

§ A collection of numbers arranged into an array of dimensions m ˆ n, e.g.,
M P Rmˆn

§ A linear operator fpxq “ Mx

§ A bilinear form xTMy

§ What is a tensor?
§ A collection of numbers arranged into an array of a particular order, with

dimensions l ˆ m ˆ n ˆ ¨ ¨ ¨ , e.g., T P Rlˆmˆn is order 3
§ A multilinear operator z “ fpx,yq

zi “
ÿ

j,k

tijkxjyk

§ A multilinear form
ř

i,j,k tijkxiyjzk



Matrix Norms
§ Properties of matrix norms:

}A} ě 0

}A} “ 0 ô A “ 0

}αA} “ |α| ¨ }A}

}A ` B} ď }A} ` }B} (triangle inequality)

§ Frobenius norm:

}A}F “

ˆ

ÿ

i,j

a2ij

˙1{2

§ Operator/induced/subordinate matrix norms:
For any vector norm }¨}p, the induced matrix norm is

}A}p “ max
x‰0

}Ax}p { }x}p “ max
}x}p“1

}Ax}p

Demo: Matrix norms

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/02-linear-systems/Matrix norms.html


Existence of SVD
§ Consider any maximizer x1 P Rn with }x1}2 “ 1 to }Ax1}2

Let y1 “ Ax1{ }Ax1}2 and σ1 “ yT
1 Ax1 “ }Ax1}2, then consider any

maximizer x2 of
›

›pA ´ σ1y1x
T
1 qx2

›

›

2
.

We can see that x1 K x2 since, otherwise, we have x2 “ αx1 ` x̃2 with
x̃2 K x1 and }x̃2}2 ă }x2}2 and

›

›pA ´ σ1y1x
T
1 qpαx1 ` x̃2q

›

›

2
“

›

›pA ´ σ1y1x
T
1 qx̃2

›

›

2
.

Hence we have a contradiction, since
›

›pA ´ σ1y1x
T
1 qx2

›

›

2
ă p1{ }x̃2}2q

›

›pA ´ σ1y1x
T
1 qx̃2

›

›

2
.

More generally, we can see that any maximizer xi`1 to

}pA ´
“

y1 ¨ ¨ ¨ yi

‰

»

—

–

σ1
. . .

σi

fi

ffi

fl

“

x1 ¨ ¨ ¨ xi

‰T
qxi`1}2

is orthogonal to x1, . . . ,xi and similar for yi`1.



Singular Value Decomposition
§ The singular value decomposition (SVD)

We can express any matrix A as

A “ UΣV T

where U and V are orthogonal, and Σ is square nonnegative and diagonal,

Σ “

»

—

–

σmax
. . .

σmin

fi

ffi

fl

The columns of U and V are left and right singular vectors of A, i.e.,

Avi “ σiui, uT
i A “ σiv

T
i

§ Condition number in terms of singular values
§ We have that }A}2 “ σmax and if A´1 exists, }A´1}2 “ 1{σmin

§ Consequently, κpAq “ }A}2}A´1}2 “ σmax{σmin



Visualization of Matrix Conditioning



Matrix Condition Number

§ The matrix condition number κpAq is the ratio between the max and min
distance from the surface to the center of the unit ball (norm-1 vectors)
transformed by A:

§ The max distance to center is given by the vector maximizing max}x}“1 }Ax}2.
§ The min distance to center is given by the vector minimizing

min}x}“1 }Ax}2 “ 1{pmax}x}“1

›

›A´1x
›

›

2
q.

§ Thus, we have that κpAq “ }A}2

›

›A´1
›

›

2

§ The matrix condition number bounds the worst-case amplification of error in
a matrix-vector product: Consider y ` δy “ Apx ` δxq, assume }x}2 “ 1

§ In the worst case, }y}2 is minimized, that is }y}2 “ 1{
›

›A´1
›

›

2

§ In the worst case, }δy}2 is maximized, that is }δy}2 “ }A}2 }δy}2

§ So }δy}2 { }y}2 is at most κpAq }δx}2 { }x}2



Linear Systems
§ Given a square matrix A P Rnˆn with rank n, consider solving Ax “ b given b

§ The SVD allows explicit inversion of A

A´1 “ V Σ´1UT

§ However, Gaussian elimination is more computationally efficient
§ Can factorize arbitrary A as A “ PLU for permutation matrix P and

triangular L, U
§ For symmetric A LDLT factorization is A “ PLDLTP T , where D has diagonal

entries of 2-by-2 anti-diagonal symmetric blocks
§ If positive definite, Cholesky requires no pivoting/permutation
§ Suffices to solve linear systems in Opn2q cost using triangular solve

§ Given a factorization of A, solving a system with A ` uvT has cost Opn2q via
the Sherman-Morrison-Woodbury formula



Linear Least Squares
§ Find x‹ “ argminxPRn }Ax ´ b}2 where A P Rmˆn:

Since m ě n, the minimizer generally does not attain a zero residual Ax ´ b.
We can rewrite the optimization problem constraint via

x‹ “ argmin
xPRn

}Ax ´ b}
2
2 “ argmin

xPRn

”

pAx ´ bqT pAx ´ bq

ı

§ Given the SVD A “ UΣV T we have x‹ “ V Σ:UT
looomooon

A:

b, where Σ: contains the

reciprocal of all nonzeros in Σ, and more generally : denotes pseudoinverse:
§ The minimizer satisfies UΣV Tx‹ – b and consequently also satisfies

Σy‹ – d where y‹ “ V Tx‹ and d “ UT b.

§ The minimizer of the reduced problem is y‹ “ Σ:d, so yi “ di{σi for
i P t1, . . . , nu and yi “ 0 for i P tn ` 1, . . . ,mu.



Normal Equations
§ Normal equations are given by solving ATAx “ ATb:

If ATAx “ ATb then

pUΣV T qTUΣV Tx “ pUΣV T qTb

ΣTΣV Tx “ ΣTUTb

V Tx “ pΣTΣq´1ΣTUTb “ Σ:UTb

x “ V Σ:UTb “ x‹

§ However, solving the normal equations is a more ill-conditioned problem
then the original least squares algorithm
Generally we have κpATAq “ κpAq2 (the singular values of ATA are the
squares of those in A). Consequently, solving the least squares problem via
the normal equations may be unstable because it involves solving a problem
that has worse conditioning than the initial least squares problem.

Demo: Normal equations vs Pseudoinverse
Demo: Issues with the normal equations

https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Normal equations vs Pseudoinverse.html
https://relate.cs.illinois.edu/course/cs450-f18/f/demos/upload/03-least-squares/Issues with the normal equations.html


Solving the Normal Equations

§ If A is full-rank, then ATA is symmetric positive definite (SPD):
§ Symmetry is easy to check pATAqT “ ATA.
§ A being full-rank implies σmin ą 0 and further if A “ UΣV T we have

ATA “ V TΣ2V

which implies that rows of V are the eigenvectors of ATA with eigenvalues Σ2

since ATAV T “ V TΣ2.

§ Since ATA is SPD we can use Cholesky factorization, to factorize it and
solve linear systems:

ATA “ LLT



QR Factorization
§ If A is full-rank there exists an orthogonal matrix Q and a unique

upper-triangular matrix R with a positive diagonal such that A “ QR
§ Given ATA “ LLT , we can take R “ LT and obtain Q “ AL´T , since

L´1AT
looomooon

QT

AL´T
loomoon

Q

“ I implies that Q has orthonormal columns.

§ A reduced QR factorization (unique part of general QR) is defined so that
Q P Rmˆn has orthonormal columns and R is square and upper-triangular
A full QR factorization gives Q P Rmˆm and R P Rmˆn, but since R is upper
triangular, the latter m ´ n columns of Q are only constrained so as to keep
Q orthogonal. The reduced QR factorization is given by taking the first n
columns Q and Q̂ the upper-triangular block of R, R̂ giving A “ Q̂R̂.

§ We can solve the normal equations (and consequently the linear least
squares problem) via reduced QR as follows

ATAx “ ATb ñ R̂T Q̂T Q̂
loomoon

I

R̂x “ R̂T Q̂Tb ñ R̂x “ Q̂Tb



Computing the QR Factorization
§ The Cholesky-QR algorithm uses the normal equations to obtain the QR

factorization
§ Compute ATA “ LLT , take R “ LT , and solve for Q triangular linear systems

LQT “ AT

§ If A is m ˆ n, forming ATA has cost mn2, computing Cholesky factorization
has cost p2{3qn3, and solving the triangular systems (if Q is needed) costs mn2,
yielding total cost 2mn2 ` p2{3qn3

§ However, this method is unstable since ATA is ill-conditioned. This is
addressible by iterating on the computed (nearly-orthogonal) Q factor
(CholeskyQR2).

§ Orthogonalization-based methods are most efficient and stable for QR
factorization of dense matrices

§ Apply a sequence of orthogonal transformations Q1, . . . ,Qk to reduce A to
triangular form pQ1 ¨ ¨ ¨QkqTA “ R

§ Householder QR uses rank-1 perturbations of the identity matrix (reflectors)
Qi “ I ´ 2uiu

T
i to zero-out each sub-column of A

§ Givens rotations zero-out a single entry at a time
§ Both approaches have cost Opmn2q with similar constant to Cholesky-QR



Householder orthogonalization



Eigenvalue Decomposition
§ If a matrix A is diagonalizable, it has an eigenvalue decomposition

A “ XDX´1

where X are the right eigenvectors, X´1 are the left eigenvectors and D are
eigenvalues

AX “
“

Ax1 ¨ ¨ ¨Axn

‰

“ XD “
“

d11x1 ¨ ¨ ¨ dnnxn

‰

.

§ If A is symmetric, its right and left singular vectors are the same, and
consequently are its eigenvectors.

§ More generally, any normal matrix, AHA “ AAH , has unitary eigenvectors.
§ A and B are similar, if there exist Z such that A “ ZBZ´1

§ Normal matrices are unitarily similar (Z´1 “ ZH) to diagonal matrices
§ Symmetric real matrices are orthogonally similar (Z´1 “ ZT ) to real diagonal

matrices
§ Hermitian matrices are unitarily similar to real diagonal matrices



Similarity of Matrices
Invertible similarity transformations Y “ XAX´1

matrix (A) reduced form (Y )
arbitrary bidiagonal
diagonalizable diagonal

Unitary similarity transformations Y “ UAUH

matrix (A) reduced form (Y )
arbitrary triangular (Schur)
normal diagonal
Hermitian real diagonal

Orthogonal similarity transformations Y “ QAQT

matrix (A) reduced form (Y )
real Hessenberg
real symmetric real diagonal
real SPD real positive diagonal



Field of Values
§ For any square matrix A and vector x the Rayleigh quotient is

ρApxq “
xHAx

xHx

§ Its magnitude is bounded by the singular values as

1{ }A}
´1
2 ď ρApxq| ď }A}2

§ If x is an eigenvector of A, so Ax “ λx or xHA “ λxH , then

ρApxq “ λ

§ The set FA “ tρApxq : x P Cn,x ‰ 0u is the field of values of A



Field of Values and Eigenvalues
§ Clearly any eigenvalue λ of A is in FA

§ For the matrix A “

»

—

—

–

3
´3

3
1 1

fi

ffi

ffi

fl

, FA is1

§ The field of values of a normal matrix is easy to characterize
§ If A is normal, FA is the convex hull of the eigenvalues.
§ If A is Hermitian and positive definite, FA “ rσmin, σmaxs

§ In general, eigenvectors are obtained from critical points of the Rayleigh
quotient on the unit circle

LApx, λq “ xHAx ` λp1 ´ xHxq

∇LApx, λq “

„

2Ax ´ 2λx
1 ´ xHx

ȷ

“ 0,

1Credit to https://www.chebfun.org/examples/linalg/FieldOfValues.html

https://www.chebfun.org/examples/linalg/FieldOfValues.html


Singular Vectors as Critical Points

§ Like eigenvectors, we can also derive singular vectors from an optimization
(critical point) perspective

§ Again, consider the critical points of the Lagrangian function of an optimization
problem on the unit-sphere,

LApu,v, λ1, λ2q “ 2uHAv ` λ1p1 ´ uHuq ` λ2p1 ´ vHvq

∇LApu,v, λ1, λ2q “

»

—

—

–

2Av ´ 2λ1u
2AHu ´ 2λ2v

1 ´ uHu
1 ´ vHv

fi

ffi

ffi

fl

“ 0,

§ At a critical point, we can see that λ1 “ λ2, since uHAv “ λ1 “ λ2.



Matrix Functions

§ Consider a polynomial p, for a diagonalizable matrix A “ XDX´1,

ppAq “ XppDqX´1

ppAq “

degppq
ÿ

i“0

ciA
i “

degppq
ÿ

i“0

ci

i
ź

j“1

XDX´1

“

degppq
ÿ

i“0

ciXDiX´1 “ X

ˆ degppq
ÿ

i“0

ciD
i

˙

X´1

§ The above definition readily extends to other analytic functions f , but
non-diagonalizable matrices require a more sophisticated definition



Crouzeix’s conjecture

§ So far, we have seen close connections between the matrix 2-norm and
singular values, and between the Rayleigh quotient and the eigenvalues

§ An important open problem in numerical analysis that relates the norm with
the Rayleigh quotient is Crouzeix’s conjecture

§ For any polynomial p and complex matrix A,

}ppAq}2 ď 2 max
zPFA

|ppzq|

§ The conjecture is known to hold for some subclasses of matrices and with
constant 11.08 instead of 2 (Crouzeix’s theorem)

§ If valid, the bound of 2 is tight, including for ppAq “ A, by choosing A “

„

0 1
0 0

ȷ



Computing Eigenvalue and Singular Value Decompositions
§ Direct methods for eigenvalue problems start by reducing the matrix to

upper-Hessenberg form
§ Seek a sequence of unitary similarity transformations

H “ Qk ¨ ¨ ¨Q1AQT
1 ¨ ¨ ¨QT

k so that H is zero below the first subdiagonal
(upper-Hessenberg)

§ Can pick each Qi as a Householder transformation acting on the last n ´ i rows
§ Opn3q cost to reduce to upper-Hessenberg or tridiagonal if symmetric
§ To obtain singular vectors, can work with ATA or perform ’bidiagonal

reduction’
§ If matrix is sparse, fill may be introduced

§ Iterative methods are generally based on products with the matrix
§ Power iteration converges to the largest eigenvalue eigenvectors of A
§ Convergence rate is linear and depends on ratio of two largest eigenvalues
§ Integrating diagonal shifts and inversion yields other methods: inverse iteration,

Rayleigh-quotient iteration
§ Most iterative methods involve only products with A or a related matrix



Introduction to Krylov Subspace Methods
§ Krylov subspace methods work with information contained in the nˆ k matrix

Kk “
“

x0 Ax0 ¨ ¨ ¨ Ak´1x0

‰

We seek to best use the information from the matrix vector product results
(columns of Kk) to solve eigenvalue problems.

§ Assuming Kn is invertible, the matrix K´1
n AKn is a companion matrix C:

Letting k
piq
n “ Ai´1x, we observe that

AKn “

”

Ak
p1q
n ¨ ¨ ¨ Ak

pn´1q
n Ak

pnq
n

ı

“

”

k
p2q
n ¨ ¨ ¨ k

pnq
n Ak

pnq
n

ı

,

therefore premultiplying by K´1
m transforms the first n ´ 1 columns of AKn

into the last n ´ 1 columns of I,

K´1
n AKn “

”

K´1
n k

p2q
n ¨ ¨ ¨ K´1

n k
pnq
n K´1

n Ak
pnq
n

ı

“

”

e2 ¨ ¨ ¨ en K´1
n Ak

pnq
n

ı



Krylov Subspaces

§ Given QkRk “ Kk, we obtain an orthonormal basis for the Krylov subspace,

KkpA,x0q “ spanpQkq “ tppAqx0 : degppq ă ku,

where p is any polynomial of degree less than k.
§ The Krylov subspace includes the k ´ 1 approximate dominant eigenvectors

generated by k ´ 1 steps of power iteration:
§ The approximation obtained from k ´ 1 steps of power iteration starting from x0

is given by the Rayleigh-quotient of y “ Akx0.
§ This vector is within the Krylov subspace, y P KkpA,x0q.
§ Consequently, Krylov subspace methods will generally obtain strictly better

approximations of the dominant eigenpair than power iteration.



Rayleigh-Ritz Procedure
§ The eigenvalues/eigenvectors of Hk are the Ritz values/vectors:

Hk “ XDX´1

eigenvalue approximations based on Ritz vectors X are given by QkX.
§ The Ritz vectors and values are the ideal approximations of the actual

eigenvalues and eigenvectors based on only Hk and Qk:
Assuming A is a symmetric matrix with positive eigenvalues, the largest Ritz
value λmaxpHkq will be the maximum Rayleigh quotient of any vector in
Kk “ spanpQkq,

max
xPspanpQkq

xTAx

xTx
“ max

y‰0

yTQT
kAQky

yTy
“ max

y‰0

yTHky

yTy
“ λmaxpHkq,

which is the best approximation to λmaxpAq “ maxx‰0
xTAx
xTx

available in Kk.
The quality of the approximation can also be shown to be optimal for other
eigenvalues/eigenvectors.



Arnoldi Iteration

§ Arnoldi iteration computes the ith column of Hn, hi and the ith column of
Qn directly using the recurrence Aqi “ Qnhi “

ři`1
j“1 hjiqj

§ Note that
qT
i Aqj “ qT

i pQnHnQ
T
n qqj “ eTi Hnej “ hij .

§ The Arnoldi algorithm computes qi`1 from q1, . . . , qi by first computing
ui “ Aqi then orthogonalizing,

qi`1hi`1,i “ ui ´

i
ÿ

j“1

qjhji, hji “ qT
j ui

then computing the norm of the vector to obtain hi`1,i, yielding the ith column
of Hn.



Multidimensional Optimization
§ Minimize fpxq

§ In the context of constrained optimization, also have equality and or inequality
constraints, e.g., Ax “ b or x ą 0

§ Unconstrained local optimality holds if ∇fpx˚q “ 0 and Hf px˚q is positive
semi-definite

§ Reduces to solving nonlinear equations via optimality condition
§ Unconstrained local optimality conditions are looser, need the gradient to be

zero or positive in all unconstrained directions at x˚

§ The condition ∇fpx˚q “ 0 implies poor conditioning, perturbations that change
the function value in the kth digit can change the sollution in the pk{2qth digit

§ Quadratic optimization fpxq “ 1
2x

TAx ´ bTx

§ Quadratic optimization problems can provide local approximations to general
nonlinear optimization problems via Newton’s method (where A is the Hessian
and bT is the gradient)

§ Equivalent to solving linear system Ax “ b by optimality condition
§ Accordingly, conditioning relative to perturbation in b is κpAq



Basic Multidimensional Optimization Methods
§ Steepest descent: minimize f in the direction of the negative gradient:

xk`1 “ xk ´ αk∇fpxkq

such that fpxk`1q “ minαk
fpxk ´ αk∇fpxkqq, i.e. perform a line search

(solve 1D optimization problem) in the direction of the negative gradient.
§ Given quadratic optimization problem fpxq “ 1

2x
TAx ` bTx where A is

symmetric positive definite, the error ek “ xk ´ x˚ satisfies

||ek`1||A “ eTk`1Aek`1 “
σmaxpAq ´ σminpAq

σmaxpAq ` σminpAq
||ek||A

§ When sufficiently close to a local minima, general nonlinear optimization
problems are described by such an SPD quadratic problem.

§ Convergence rate depends on the conditioning of A, since

σmaxpAq ´ σminpAq

σmaxpAq ` σminpAq
“

κpAq ´ 1

κpAq ` 1
.



Gradient Methods with Extrapolation
§ We can improve the constant in the linear rate of convergence of steepest

descent by leveraging extrapolation methods, which consider two previous
iterates (maintain momentum in the direction xk ´ xk´1):

xk`1 “ xk ´ αk∇fpxkq ` βkpxk ´ xk´1q

§ The heavy ball method, which uses constant αk “ α and βk “ β, achieves
better convergence than steepest descent:

||ek`1||A “

a

κpAq ´ 1
a

κpAq ` 1
||ek||A

Nesterov’s gradient optimization method is another instance of an
extrapolation method that provides further improved optimality guarantees.



Conjugate Gradient Method
§ The conjugate gradient method is capable of making the optimal (for a

quadratic objective) choice of αk and βk at each iteration of an extrapolation
method:

pαk, βkq “ argmin
αk,βk

„

f
´

xk ´ αk∇fpxkq ` βkpxk ´ xk´1q

¯

ȷ

§ For SPD quadratic programming problems, conjugate gradient is an optimal first
order method, converging in n iterations.

§ It implicitly computes Lanczos iteration, searching along A-orthogonal
directions at each step.

§ Parallel tangents implementation of the method proceeds as follows

1. Perform a step of steepest descent to generate x̂k from xk.
2. Generate xk`1 by minimizing over the line passing through xk´1 and x̂k.

The method is equivalent to CG for a quadratic objective function.



Krylov Optimization
§ Conjugate gradient (CG) finds the minimizer of fpxq “ 1

2x
TAx ´ bTx (which

satisfies optimality condition Ax “ b) within the Krylov subspace of A:
§ It constructs Krylov subspace KkpA, bq “ spanpb,Ab, . . . ,Ar´1bq.
§ At the kth step conjugate gradient yields iterate

xk “ ||b||2QkT
´1
k e1,

where Qk is an orthogonal basis for Krylov subspace KkpA, bq and
Tk “ QT

kAQk.
§ This choice of xk minimizes fpxq since

min
xPKkpA,bq

fpxq “ min
yPRk

fpQkyq

“ min
yPRk

yTQT
kAQky ´ bTQky

“ min
yPRk

yTTky ´ ||b||2e
T
1 y

is minimized by y “ ||b||2T
´1
k e1.



Conjugate Gradient Method: Optimized Form
After initialization x0 “ 0, r0 “ b, p0 “ r0, the kth iteration of CG computes

qk “ Apk

αk “
rTk rk

qTk pk

xk`1 “ xk ` αkpk

rk`1 “ rk ´ αkqk

At this point if the residual norm (}rk`1}) is small, terminate, otherwise prepare
for next iteration,

pk`1 “ rk`1 `
rTk`1rk`1

rTk rk
pk

See Jonathan Shewchuk 1994 notes on CG or James Demmel’s book for the
derivation of this form of the algorithm.



Conjugate Gradient Convergence Analysis
§ In previous discussion, we assumed Kn is invertible, which may not be the

case if A has k ă n distinct eigenvalues, however, then CG converges in
k ´ 1 iterations (in exact arithmetic)

§ To prove this, we can analyze the ‘minimizing‘ polynomials in the Krylov
subspace in terms of the (real and positive) eigenvalues of A

§ The approximate solution xk obtained by CG after k ´ 1 iterations is given by
minimizing z P KkpA, bq, which means z “ ρk´1pAqb for some polynomial ρk´1

of degree k ´ 1

§ Now, consider the residual

Ax ´ b “ pAρk´1pAq ´ Iqb

§ Choosing ρk´1 as a polynomial interpolant so that ρk´1pλq “ 1{λ for λ P λpAq,
results in a zero residual since then ρk´1pAq “ A´1.



Round-off Error in Conjugate Gradient

§ CG provides strong convergence guarantees for SPD matrices in exact
arithmetic

§ Classically, CG was viewed as a direct method, since its guaranteed to
convergence in n iterations

§ In practice, round-off error prevents CG from achieving this for realistic
matrices, so CG was actually abandoned for a while due to being viewed as
unstable

§ Later, it was realized that CG is highly competitive as an iterative method
§ Due to round-off CG may stagnate / have plateaus in convergence

§ A formal analysis of round-off error2 reveals that CG with round-off is
equivalent to exact CG on a matrix of larger dimension, whose eigenvalues are
clustered around those of A

§ Using this view, CG convergence plateaus may be explained by the polynomial
qk developing more and more zeros near the same eigenvalue of A

2A. Greenbaum and Z. Strakos, SIMAX 1992



Preconditioning
§ Convergence of iterative methods for Ax “ b depends on κpAq, the goal of a

preconditioner M is to obtain x by solving

M´1Ax “ M´1b

with κpM´1Aq ă κpAq
§ need not form M´1A but only compute matrix-vector products M´1pAxq

§ want M´1x to be easy to compute (easier than A´1x)
§ so generally one extracts some M « A that is easy to solve linear systems with
§ however, M « A may be insufficient/unnecessary, primary goal is to improve

conditioning to accelerate iterative methods, i.e., want κpM´1Aq ! κpAq

§ Common preconditioners select parts of A or perform inexact factorization
§ (block-)Jacobi preconditioner takes M to be (block-)diagonal of A
§ incomplete LU (ILU) preconditioners compute M “ LU « A (+pivoting)
§ ILU variants constraint sparsity of L and U factors during factorization to be

the same or not much more than that of A
§ good problem-specific preconditioners are often available in practice and

theory, applying also to problems beyond linear systems (eigenvalue problems,
optimization, approximate graph algorithms)



Newton’s Method
§ Newton’s method in n dimensions is given by finding minima of
n-dimensional quadratic approximation using the gradient and Hessian of f :

fpxk ` sq « f̂psq “ fpxkq ` sT∇fpxkq `
1

2
sTHf pxkqs.

The minima of this function can be determined by identifying critical points

0 “ ∇f̂psq “ ∇fpxkq ` Hf pxkqs,

thus to determine s we solve the linear system,

Hf pxkqs “ ´∇fpxkq.

Assuming invertibility of the Hessian, we can write the Newton’s method
iteration as

xk`1 “ xk ´ Hf pxkq´1∇fpxkq
loooooooooomoooooooooon

s

.

Quadratic convergence follows by fixed point function analysis, beyond
smoothness, a sufficient assumption is that Hf px˚q is SPD.



Nonlinear Least Squares
§ An important special case of multidimensional optimization is nonlinear least

squares, the problem of fitting a nonlinear function fxptq so that fxptiq « yi:
For example, consider fitting frx1,x2sptq “ x1 sinpx2tq so that

»

–

frx1,x2sp1.5q

frx1,x2sp1.9q

frx1,x2sp3.2q

fi

fl «

»

–

´1.2
4.5
7.3

fi

fl .

§ We can cast nonlinear least squares as an optimization problem to minimize
residual error and solve it by Newton’s method:
Define residual vector function rpxq so that ripxq “ yi ´ fxptiq and minimize

ϕpxq “
1

2
||rpxq||22 “

1

2
rpxqTrpxq.

Now the gradient is ∇ϕpxq “ JT
r pxqrpxq and the Hessian is

Hϕpxq “ JT
r pxqJrpxq `

m
ÿ

i“1

ripxqHripxq.



Gauss-Newton Method
§ The Hessian for nonlinear least squares problems has the form:

Hϕpxq “ JT
r pxqJrpxq `

m
ÿ

i“1

ripxqHripxq.

The second term is small when the residual function rpxq is small, so
approximate

Hϕpxq « Ĥϕpxq “ JT
r pxqJrpxq.

§ The Gauss-Newton method is Newton iteration with an approximate Hessian:

xk`1 “ xk ´ Ĥϕpxkq´1∇fpxkq “ xk ´ pJT
r pxkqJrpxkqq´1JT

r pxkqrpxkq.

Recognizing the normal equations, we interpret the Gauss-Newton method as
solving linear least squares problems Jrpxkqsk – rpxkq,xk`1 “ xk ´ sk.



Low Rank Matrix Approximation
§ Given a matrix A P Rmˆn seek rank r ă m,n approximation

§ Given by matrices U P Rmˆr and V P Rnˆr so

A « UV T

§ Reduces memory footprint and cost of applying A from mn to mr ` nr
§ This factorization is nonunique, UV T “ pUMqpV M´T qT

§ Eckart-Young (optimal low-rank approximation by SVD) theorem
§ Truncated SVD approximates A as

A « Ã “

r
ÿ

i“1

σiuiv
T
i

where σ1, . . . , σr are the largest r singular values, while ui and vi are the
associated left and right singular vectors

§ Eckart-Young theorem demonstrates that the truncated SVD minimizes

}A ´ Ã}2
loooomoooon

σr`1

and }A ´ Ã}2F
loooomoooon

řminpm,nq

i“r`1 σ2
i



Rank Revealing Matrix Factorizations
§ Computing the SVD

§ Can compute full SVD with Opmnminpm,nqq cost via bidiagonalization
§ unconditionally stable and accurate
§ inefficient for low r or if A is sparse

§ Given any low-rank approximation composed of U and V , compute QR of each
and SVD of product of R factors to obtain SVD with total cost Oppm ` nqr2q

§ QR with column pivoting
§ By selecting columns of largest norm in the trailing matrix during QR

factorization, we obtain a pivoted factorization with permutation matirx P

AP “ QR

§ Truncating this factorization can be done after applying r Householder
reflectors (or another QR algorithm on r columns), with cost Oppm ` nqrq

§ Approximation is somewhat suboptimal in theory, but in practice almost always
as accurate as truncated SVD



Simultaneous and Orthogonal Iteration

§ Orthogonal iteration computing many eigenvectors at once in an iterative
way

§ Initialize X0 P Rnˆk to be random, orthogonalize it to obtain Q0, then iterate via

Qi`1Ri`1 “ AQi

§ For random starting guess, with high probability, limiÑ8 spanpXiq “ S where S
is the subspace spanned by the k eigenvectors of A with the largest eigenvalues
in magnitude.

§ Can use this to compute the right singular vectors of matrix M by using
A “ MTM (no need to form A, just multiply Qi by MT then M ).

§ QR has cost Opnk2q while product has cost Opn2kq (or more generally, k
products with A) per iteration.

§ QR iteration performs orthogonal iteration implicitly when n “ k



Orthogonal Iteration Convergence

§ If A has distinct eigenvalues and Ri has positive decreasing diagonal, the
jth column of Qi converges to the jth Schur vector of A linearly with rate
maxp|λj`1{λj |, |λj{λj´1|q.

§ Convergence of the first column of Qi follows by analogy to power iteration
§ Span of first j columns of Qi converges to the span of the first j Schur vectors

with rate |λj`1{λj |

§ Hence orthogonal iteration converges similarly to k instances of inverse
iteration with shifts chosen near the k largest magnitude eigenvalues

§ Block-Krylov methods, which consider spantX0,AX0, . . . ,A
k´1X0u provide

some improvement over orthogonal iteration for low rank SVD (see works by
Ming Gu and others)



Randomized SVD
§ Orthogonal iteration for SVD can also be viewed as a randomized algorithm

§ Suppose that we have an exact low-rank factorization A “ UΣV T with
Σ P Rrˆr

§ If Qp0q is a random orthogonal matrix, so is V TQp0q

§ Consequently, AQp0q is a set of r random linear combinations of columns of UΣ
§ Further, after the QR Qp1qRp1q “ AQp0q,

UUT “ Qp1qQp1qT

holds with probability 1 (suffices to have AQp0q full rank)
§ Consequently, we can compute SVD of Qp1qTA (with cost Opnr2q) and recover

U by premultiplying the computed left singular vectors by Qp1q

§ When A is not exactly low-rank, span of leading singular vectors can be
captured by oversampling (e.g., selecting each Qpiq to have r ` 10 columns)

§ Initial guess Qp0q need not be orthogonal (Gaussian random performs well,
structured pseudo-random enables Opmn log nq complexity for one-shot
randomized SVD), but better accuracy is obtained with orthogonality



Generalized Nyström Algorithm
§ The generalized Nyström algorithm provides an efficient way of computing a

low-rank factorization given an approximation of its span3

§ Given matrices S1 P Rkˆn and S2 P Rkˆm the rank k factorization of a matrix
A P Rm ˆ n is obtained via

Âk “ AST
1 pS2AST

1 q:S2A

§ The truncated SVD is recovered if S1 and S2 contain the largest eigenvectors
§ Generally, we expect S2AST

1 to be full rank, otherwise factorization is
rank-deficient

§ If S2AST
1 is invertible, @u,AST

1 u “ ÂkS
T
1 u

§ The skeleton decomposition is obtained by choosing both S1 and S2 to be
sampling matrices (each row being a unit vector)

§ Instead, S1 and S2 may be chosen as random ‘sketch matrices‘
§ The interpolative decomposition is obtained by choosing either of the two to be

a sampling matrix.

3Nakatsukasa, Yuji, Fast and stable randomized low-rank matrix approximation, 2020.



Analysis of Generalized Nyström Algorithm
§ Consider F1 “ AST

1 and F2 “ AST
2 , derive the minimizer Z to

}A ´ F1ZF T
2 }F

vecpA ´ F1ZF T
2 q “ vecpAq ´ vecpF1 b F2q vecpZq

vecpZq “ vecpF1 b F2q` vecpAq

“ vecpF`
1 b F`

2 q vecpAq

“ F`
1 ApF`

2 qT

§ The generalized Nyström algorithm may be interpreted as applying a
two-sided oblique projection of A

§ Optimal solution above is given by orthogonal projections F1F
`
1 and F2F

`
2

§ Generalized Nyström approximation instead uses the oblique projections

P1 “ AS1pS2AST
1 q`S2,P2 “ ST

1 pS2AST
1 q`S2A

where P1P1 “ P1 and P2P2 “ P2, while the approximation obtained via P1AP2
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