CS 598 EVS: Tensor Computations Basics of Tensor Computations

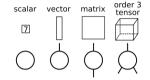
Edgar Solomonik

University of Illinois, Urbana-Champaign

Tensors

A *tensor* is a collection of elements

- its dimensions define the size of the collection
- its order is the number of different dimensions
- specifying an index along each tensor mode defines an element of the tensor
- A few examples of tensors are
 - Order 0 tensors are scalars, e.g., $s \in \mathbb{R}$
 - Order 1 tensors are vectors, e.g., $\boldsymbol{v} \in \mathbb{R}^n$
 - Order 2 tensors are matrices, e.g., $\boldsymbol{A} \in \mathbb{R}^{m \times n}$
 - An order 3 tensor with dimensions $s_1 \times s_2 \times s_3$ is denoted as $\mathcal{T} \in \mathbb{R}^{s_1 \times s_2 \times s_3}$ with elements t_{ijk} for $i \in \{1, \ldots, s_1\}, j \in \{1, \ldots, s_2\}, k \in \{1, \ldots, s_3\}$



Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements

- Folding a tensor yields a higher-order tensor with the same elements
- Unfolding a tensor yields a lower-order tensor with the same elements
- ▶ In linear algebra, we have the unfolding v = vec(A), which stacks the columns of $A \in \mathbb{R}^{m \times n}$ to produce $v \in \mathbb{R}^{mn}$
- ▶ For a tensor $\mathcal{T} \in \mathbb{R}^{s_1 imes s_2 imes s_3}$, $v = \mathsf{vec}(\mathcal{T})$ gives $v \in \mathbb{R}^{s_1 s_2 s_3}$ with

$$v_{i+(j-1)s_1+(k-1)s_1s_2} = t_{ijk}$$

 A common set of unfoldings is given by matricizations of a tensor, e.g., for order 3,

$$oldsymbol{T}_{(1)} \in \mathbb{R}^{s_1 imes s_2 s_3}, oldsymbol{T}_{(2)} \in \mathbb{R}^{s_2 imes s_1 s_3}, ext{ and } oldsymbol{T}_{(3)} \in \mathbb{R}^{s_3 imes s_1 s_2}$$

Matrices and Tensors as Operators and Multilinear Forms

- What is a matrix?
 - \blacktriangleright A collection of numbers arranged into an array of dimensions $m\times n,$ e.g., $\pmb{M}\in\mathbb{R}^{m\times n}$
 - A linear operator $f_M(x) = Mx$
 - A bilinear form $x^T M y$
- What is a tensor?
 - A collection of numbers arranged into an array of a particular order, with dimensions $l \times m \times n \times \cdots$, e.g., $T \in \mathbb{R}^{l \times m \times n}$ is order 3
 - A multilinear operator $m{z} = m{f}_{\mathcal{T}}(m{x},m{y})$

$$z_i = \sum_{j,k} t_{ijk} x_j y_k$$

• A multilinear form $\sum_{i,j,k} t_{ijk} x_i y_j z_k$

Tensor Transposition

For tensors of order ≥ 3 , there is more than one way to transpose modes

A tensor transposition is defined by a permutation p containing elements {1,...,d}

$$y_{i_{p_1},\dots,i_{p_d}} = x_{i_1,\dots,i_d}$$

• In this notation, a transposition A^T of matrix A is defined by p = [2, 1] so that

$$b_{i_2i_1} = a_{i_1i_2}$$

- Tensor transposition is a convenient primitive for manipulating multidimensional arrays and mapping tensor computations to linear algebra
- When elementwise expressions are used in tensor algebra, indices are often carried through to avoid transpositions

Tensor Symmetry

We say a tensor is *symmetric* if $\forall j, k \in \{1, \dots, d\}$

 $t_{i_1\dots i_j\dots i_k\dots i_d} = t_{i_1\dots i_k\dots i_j\dots i_d}$

A tensor is *antisymmetric* (skew-symmetric) if $\forall j, k \in \{1, \dots, d\}$

$$t_{i_1\dots i_j\dots i_k\dots i_d} = (-1)t_{i_1\dots i_k\dots i_j\dots i_d}$$

A tensor is *partially-symmetric* if such index interchanges are restricted to be within disjoint subsets of $\{1, \ldots, d\}$, e.g., if the subsets for d = 4 and $\{1, 2\}$ and $\{3, 4\}$, then

$$t_{ijkl} = t_{jikl} = t_{jilk} = t_{ijlk}$$

Tensor Sparsity

We say a tensor \mathcal{T} is *diagonal* if for some v,

$$t_{i_1,\dots,i_d} = \begin{cases} v_{i_1} & : i_1 = \dots = i_d \\ 0 & : \text{otherwise} \end{cases} = v_{i_1} \delta_{i_1 i_2} \delta_{i_2 i_3} \cdots \delta_{i_{d-1} i_d}$$

- In the literature, such tensors are sometimes also referred to as 'superdiagonal'
- Generalizes diagonal matrix
- A diagonal tensor is symmetric (and not antisymmetric)

If most of the tensor entries are zeros, the tensor is *sparse*

- Generalizes notion of sparse matrices
- Sparsity enables computational and memory savings
- We will consider data structures and algorithms for sparse tensor operations later in the course

Tensor Products and Kronecker Products

Tensor products can be defined with respect to maps $f:V_f\to W_f$ and $g:V_g\to W_g$

$$h = f \times g \implies h: (V_f \times V_g) \to (W_f \times W_g), \quad h(x,y) = f(x)g(y)$$

Tensors can be used to represent multilinear maps and have a corresponding definition for a tensor product

$$T = X \times Y \quad \Rightarrow \quad t_{i_1,\dots,i_m,j_1,\dots,j_n} = x_{i_1,\dots,i_m} y_{j_1,\dots,j_n}$$

The *Kronecker product* between two matrices $A \in \mathbb{R}^{m_1 \times m_2}$, $B \in \mathbb{R}^{n_1 \times n_2}$

$$C = A \otimes B \implies c_{i_2 + (i_1 - 1)n_1, j_2 + (j_1 - 1)n_2} = a_{i_1 j_1} b_{i_2 j_2}$$

corresponds to transposing and unfolding the tensor product

Properties of Einstein Summation Expressions

Given an elementwise expression containing a product of tensors, the operands commute

• For example $AB \neq BA$, but

$$\sum_{k} a_{ik} b_{kj} = \sum_{k} b_{kj} a_{ik}$$

Similarly with multiple terms, we can bring summations out and reorder as needed, e.g., for ABC

$$\sum_{k} a_{ik} (\sum_{l} b_{kl} c_{lj}) = \sum_{kl} c_{lj} b_{kl} a_{ik}$$

A contraction can be succinctly described by a tensor diagram

- Indices in contractions are only meaningful in so far as they are matched up
- A tensor diagram is defined by a graph with a vertex for each tensor and an edge/leg for each index/mode
- Indices that are not-summed are drawn by pointing the legs/edges into whitespace

Tensor Contractions

A *tensor contraction* multiplies elements of two tensors and computes partial sums to produce a third, in a fashion expressible by pairing up modes of different tensors, defining *einsum* (term stems from Einstein's summation convention)

tensor contraction	einsum	diagram
inner product	$w = \sum_i u_i v_i$	
outer product	$w_{ij} = u_i v_{ij}$	
pointwise product	$w_i = u_i v_i$	
Hadamard product	$w_{ij} = u_{ij}v_{ij}$	
matrix multiplication	$w_{ij} = \sum_k u_{ik} v_{kj}$	
batched matmul.	$w_{ijl} = \sum_k u_{ikl} v_{kjl}$	
tensor times matrix	$w_{ilk} = \sum_j u_{ijk} v_{lj}$	

The terms 'contraction' and 'einsum' are also often used when more than two operands are involved

General Tensor Contractions

Given tensor \mathcal{U} of order s + v and \mathcal{V} of order v + t, a tensor contraction summing over v modes can be written as

$$w_{i_1...i_s j_1...j_t} = \sum_{k_1...k_v} u_{i_1...i_s k_1...k_v} v_{k_1...k_v j_1...j_t}$$

- This form omits 'Hadamard indices', i.e., indices that appear in both inputs and the output (as with pointwise product, Hadamard product, and batched mat-mul.)
- Other contractions can be mapped to this form after transposition

Unfolding the tensors reduces the tensor contraction to matrix multiplication

- \blacktriangleright Combine (unfold) consecutive indices in appropriate groups of size s ,t, or v
- ▶ If all tensor modes are of dimension *n*, obtain matrix-matrix product C = AB where $C \in \mathbb{R}^{n^s \times n^t}$, $A \in \mathbb{R}^{n^s \times n^v}$, and $B \in \mathbb{R}^{n^v \times n^t}$
- Assuming classical matrix multiplication, contraction requires n^{s+t+v} elementwise products and n^{s+t+v} – n^{s+t} additions

Matrix-style Notation for Tensor Contractions

The *tensor times matrix* contraction along the *m*th mode of \mathcal{U} to produce \mathcal{V} is expressed as follows

$$\boldsymbol{\mathcal{W}} = \boldsymbol{\mathcal{U}} imes_m \boldsymbol{V} \Rightarrow \boldsymbol{W}_{(m)} = \boldsymbol{V} \boldsymbol{U}_{(m)}$$

- W_(m) and U_(m) are unfoldings where the mth mode is mapped to be an index into rows of the matrix
- To perform multiple tensor times matrix products, can write, e.g.,

$$\boldsymbol{\mathcal{W}} = \boldsymbol{\mathcal{U}} \times_1 \boldsymbol{X} \times_2 \boldsymbol{Y} \times_3 \boldsymbol{Z} \Rightarrow w_{ijk} = \sum_{pqr} u_{pqr} x_{ip} y_{jq} z_{kr}$$

The *Khatri-Rao product* of two matrices $U \in \mathbb{R}^{m \times k}$ and $V \in \mathbb{R}^{n \times k}$ products $W \in \mathbb{R}^{mn \times k}$ so that

$$oldsymbol{W} = egin{bmatrix} oldsymbol{u}_1 \otimes oldsymbol{v}_1 & \cdots & oldsymbol{u}_k \otimes oldsymbol{v}_k \end{bmatrix}$$

The Khatri-Rao product computes the einsum $\hat{w}_{ijk} = u_{ik}v_{jk}$ then unfolds $\hat{\mathcal{W}}$ so that $w_{i+(j-1)n,k} = \hat{w}_{ijk}$

Identities with Kronecker and Khatri-Rao Products

Matrix multiplication is distributive over the Kronecker product

 $(\boldsymbol{A}\otimes \boldsymbol{B})(\boldsymbol{C}\otimes \boldsymbol{D})=\boldsymbol{A}\boldsymbol{C}\otimes \boldsymbol{B}\boldsymbol{D}$

we can derive this from the einsum expression

$$\sum_{kl} a_{ik} b_{jl} c_{kp} d_{lq} = \left(\sum_{k} a_{ik} c_{kp}\right) \left(\sum_{l} b_{jl} d_{lq}\right)$$

For the Khatri-Rao product a similar distributive identity is

$$(\boldsymbol{A} \odot \boldsymbol{B})^T (\boldsymbol{C} \odot \boldsymbol{D}) = \boldsymbol{A}^T \boldsymbol{C} * \boldsymbol{B}^T \boldsymbol{D}$$

where * denotes that Hadamard product, which holds since

$$\sum_{kl} a_{ki} b_{li} c_{kj} d_{lj} = \left(\sum_{k} a_{ki} c_{kj}\right) \left(\sum_{l} b_{li} d_{lj}\right)$$

Multilinear Tensor Operations

Given an order d tensor T, define multilinear function $x^{(1)} = f^{(T)}(x^{(2)}, \dots, x^{(d)})$

For an order 3 tensor,

$$x_{i_1}^{(1)} = \sum_{i_2, i_3} t_{i_1 i_2 i_3} x_{i_2}^{(2)} x_{i_3}^{(3)} \Rightarrow \boldsymbol{f}^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}) = \boldsymbol{\mathcal{T}} \times_2 \boldsymbol{x}^{(2)} \times_3 \boldsymbol{x}^{(3)} = \boldsymbol{T}_1(\boldsymbol{x}^{(2)} \otimes \boldsymbol{x}^{(3)})$$

- ullet For an order 2 tensor, we simply have the matrix-vector product $oldsymbol{y}=oldsymbol{A}oldsymbol{x}$
- ▶ For higher order tensors, we define the function as follows

$$x_{i_1}^{(1)} = \sum_{i_2...i_d} t_{i_1...i_d} x_{i_2}^{(2)} \cdots x_{i_d}^{(d)} \Rightarrow \boldsymbol{f}^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x}^{(2)}, \dots, \boldsymbol{x}^{(d)}) = \boldsymbol{\mathcal{T}} \bigotimes_{j=2}^d \boldsymbol{x}^{(j)} = \boldsymbol{T}_1 \bigotimes_{j=2}^d \boldsymbol{x}^{(j)}$$

More generally, we can associate d functions with a T, one for each choice of output mode, for output mode m, we can compute

$$oldsymbol{x}^{(m)} = oldsymbol{T}_{(m)} \bigotimes_{j=1, j
eq m}^d oldsymbol{x}^{(j)}$$

which gives $f_{ ilde{\mathcal{T}}}$ where $ilde{\mathcal{T}}$ is a transposition of \mathcal{T} defined so that $ilde{T}_{(1)}=T_{(m)}$

Batched Multilinear Operations

The multilinear map $f^{(\mathcal{T})}$ is frequently used in tensor computations

- Two common primitives (MTTKRP and TTMc) correspond to sets (batches) of multilinear function evaluations
- ► Given a tensor $T \in \mathbb{R}^{n \times \cdots \times n}$ and matrices $U^{(1)}, \ldots, U^{(d)} \in \mathbb{R}^{n \times R}$, the matricized tensor times Khatri-Rao product (MTTKRP) computes

$$u_{i_1r}^{(1)} = \sum_{i_2...i_d} t_{i_1...i_d} u_{i_2r}^{(2)} \cdots u_{i_dr}^{(d)}$$

which we can express columnwise as

$$oldsymbol{u}_r^{(1)} = oldsymbol{f}^{(oldsymbol{\mathcal{T}})}(oldsymbol{u}_r^{(2)},\ldots,oldsymbol{u}_r^{(d)}) = oldsymbol{\mathcal{T}} imes_2 oldsymbol{u}_r^{(2)}\cdots imes_d oldsymbol{u}_r^{(d)} = oldsymbol{T}_{(1)}(oldsymbol{u}_r^{(2)}\otimes\cdots\otimesoldsymbol{u}_r^{(d)})$$

With the same inputs, the tensor-times-matrix chain (TTMc) computes

$$u_{i_1r_2...r_d}^{(1)} = \sum_{i_2...i_d} t_{i_1...i_d} u_{i_2r_2}^{(2)} \cdots u_{i_dr_d}^{(d)}$$

which we can express columnwise as

$$m{u}_{r_2...r_d}^{(1)} = m{f}^{(m{\mathcal{T}})}(m{u}_{r_1}^{(2)}, \ldots, m{u}_{r_d}^{(d)})$$

Tensor Norm and Conditioning of Multilinear Functions

We can define elementwise and operator norms for a tensor $\boldsymbol{\mathcal{T}}$

The tensor Frobenius norm generalizes the matrix Frobenius norm

$$\|\mathcal{T}\|_F = \Big(\sum_{i_1...i_d} |t_{i_1...i_d}|^2\Big)^{1/2} = \|\mathsf{vec}(\mathcal{T})\|_2 = \|\mathcal{T}_{(m)}\|_F$$

Denoting Sⁿ⁻¹ ⊂ ℝⁿ as the unit sphere (set of vectors with norm one), we define the tensor operator (spectral) norm to generalize the matrix 2-norm as

$$\begin{aligned} \|\boldsymbol{\mathcal{T}}\|_{2}^{2} &= \sup_{\boldsymbol{x}^{(1)},...,\boldsymbol{x}^{(d)} \in \mathbb{S}^{n-1}} \sum_{i_{1}...i_{d}} t_{i_{1}...i_{d}} x_{i_{1}}^{(1)} \cdots x_{i_{d}}^{(d)} \\ &= \sup_{\boldsymbol{x}^{(1)},...,\boldsymbol{x}^{(d)} \in \mathbb{S}^{n-1}} \langle \boldsymbol{x}^{(1)}, \boldsymbol{f}^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x}^{(2)},...,\boldsymbol{x}^{(d)}) \rangle \\ &= \sup_{\boldsymbol{x}^{(2)},...,\boldsymbol{x}^{(d)} \in \mathbb{S}^{n-1}} \|\boldsymbol{f}^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x}^{(2)},...,\boldsymbol{x}^{(d)})\|_{2}^{2} \end{aligned}$$

These norms satisfy the following inequalities

 $\max_{i_1...i_d} |t_{i_1...i_d}| \leqslant \|\mathcal{T}\|_2 \leqslant \|\mathcal{T}\|_F \quad \text{and} \quad \|\mathcal{T} \times_m M\|_2 \leqslant \|\mathcal{T}\|_2 \|M\|_2$

Conditioning of Multilinear Functions

Evaluation of the multilinear map is typically ill-posed for worst case inputs

• The conditioning of evaluating $f^{(T)}(x^{(2)}, \dots x^{(d)})$ with $x^{(2)}, \dots x^{(d)} \in \mathbb{S}^{n-1}$ with respect to perturbation in a variable $x^{(m)}$ for any $m \ge 2$ is

$$\kappa_{f^{(\mathcal{T})}}(\boldsymbol{x}^{(2)},\ldots,\boldsymbol{x}^{(d)}) = \frac{\|\boldsymbol{J}_{f^{(\mathcal{T})}}^{(m)}(\boldsymbol{x}^{(2)},\ldots,\boldsymbol{x}^{(d)})\|_{2}}{\|\boldsymbol{f}^{(\mathcal{T})}(\boldsymbol{x}^{(2)},\ldots,\boldsymbol{x}^{(d)})\|_{2}}$$

where $G = J_{f^{(T)}}^{(m)}(x^{(2)}, \dots, x^{(d)})$ is given by $g_{ij} = df_i^{(T)}(x^{(2)}, \dots, x^{(d)})/dx_j^{(m)}$

If we wish to associate a single condition number with a tensor, can tightly bound numerator

$$egin{aligned} \|oldsymbol{J}_{oldsymbol{f}^{(T)}}^{(m)}(oldsymbol{x}^{(2)},\ldots,oldsymbol{x}^{(d)})\|_2 \leqslant \|oldsymbol{\mathcal{T}}\|_2 \end{aligned}$$

- However, the condition number goes to infinity (problem becomes ill-posed) when $\|f^{(T)}(x^{(2)}, \dots x^{(d)})\|_2 = 0$
- Consequently, wish to lower bound the denominator in

$$\kappa_{f^{(\mathcal{T})}} = \|\mathcal{T}\|_2 / \inf_{x^{(2)},...,x^{(d)} \in \mathbb{S}^{n-1}} \|f^{(\mathcal{T})}(x^{(2)},...x^{(d)})\|_2$$

Well-conditioned Tensors

For equidimensional tensors (all modes of same size), some small ideally conditioned tensors exist

- ► For order 2 tensors, for any dimension n, there exist n × n orthogonal matrices with unit condition number
- For order 3, there exist tensors $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$ with $n \in \{2, 4, 8\}$, s.t.

$$\inf_{\boldsymbol{x}^{(2)},...,\boldsymbol{x}^{(d)}\in\mathbb{S}^{n-1}}\|\boldsymbol{f}^{(\boldsymbol{\mathcal{T}})}(\boldsymbol{x}^{(2)},\ldots\boldsymbol{x}^{(d)})\|_{2}=\|\boldsymbol{\mathcal{T}}\|_{2}=1$$

which correspond to ideally conditioned multilinear maps (generalize orthogonal matrices)

For n = 2, an example of such a tensor is given by combining the two slices

$$\begin{bmatrix} 1 & \\ & 1 \end{bmatrix} \quad \textit{and} \quad \begin{bmatrix} & 1 \\ -1 & \end{bmatrix}$$

while for n = 4, an example is given by combining the 4 slices

$$\begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & -1 \end{bmatrix} \ \begin{bmatrix} & 1 & & \\ -1 & & & \\ & & & 1 \\ & & & 1 \end{bmatrix} \ \begin{bmatrix} & & & 1 \\ & 1 & & \\ 1 & & & \end{bmatrix} \ \begin{bmatrix} & & -1 & \\ & 1 & \\ 1 & & & \\ 1 & & & \end{bmatrix}$$

Ill-conditioned Tensors

For $n \notin \{2, 4, 8\}$ given any $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, $\inf_{x, y \in \mathbb{S}^{n-1}} \| f^{(\mathcal{T})}(x, y) \|_2 = 0$

• In 1889, Adolf Hurwitz posed the problem of finding bilinear (in x and y) forms z_1, \ldots, z_n , such that for all (x, y),

$$(x_1^2 + \dots + x_l^2)(y_1^2 + \dots + y_m^2) = z_1^2 + \dots + z_n^2.$$

- In 1922, Johann Radon derived results that imply that over the reals, when l = m = n, solutions exist only if $n \in \{2, 4, 8\}$
- If for \mathcal{T} and any vectors x, y,

$$\frac{\|\boldsymbol{\mathcal{T}}\times_2\boldsymbol{x}\times_3\boldsymbol{y}\|_2}{\|\boldsymbol{x}\|_2\|\boldsymbol{y}\|_2} = 1 \quad \Rightarrow \quad \|\boldsymbol{\mathcal{T}}\times_2\boldsymbol{x}\times_3\boldsymbol{y}\|_2^2 = \|\boldsymbol{x}\|_2^2\|\boldsymbol{y}\|_2^2,$$

we can define bilinear forms that provide a solution to the Hurwitz problem

$$z_i = \sum_j \sum_k t_{ijk} x_j y_k$$

• Radon's result immediately implies $\kappa_{f(\mathcal{T})} > 1$ for $n \notin \{2, 4, 8\}$, while a 1962 result by Frank J. Adams gives $\kappa_{f(\mathcal{T})} = \infty$, as there exists a linear combination of any n real $n \times n$ matrices that is rank-deficient for $n \notin \{2, 4, 8\}$

Algebras as Tensors

- A third order tensor can be used to describe an algebra
 - An algebra over a field is a n-dimensional vector space and a bilinear product f(u, v)
 - Any bilinear product defining an algebra corresponds to an $n \times n \times n$ tensor $w = f(u, v) \Rightarrow w_i = \sum_{jk} t_{ijk} u_j v_k$
- The Hurwitz problem also gives result concerning existance of compositional algebras and division algebras
 - Compositional algebras satisfy $\|f(u,v)\| = \|u\| \|v\|$, division algebras require a multiplicative inverse
 - These include the complex numbers, quaternions, and octonions, corresponding to n = 2, 4, 8 respectively
 - These algebras may are described by tensors with $\kappa_{f}(\tau) = 1$

CP Decomposition

- The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition expresses an order d tensor in terms of d factor matrices
 - For a tensor $T \in \mathbb{R}^{n \times n \times n}$, the CP decomposition is defined by matrices U, V, and W such that

$$t_{ijk} = \sum_{r=1}^{R} u_{ir} v_{jr} w_{kr}$$

the columns of ${\bf U},\,{\bf V},\,and\,{\bf W}$ are generally not orthonormal, but may be normalized, so that

$$t_{ijk} = \sum_{r=1}^{R} \sigma_r u_{ir} v_{jr} w_{kr}$$

where each $\sigma_r \geqslant 0$ and $\| oldsymbol{u}_r \|_2 = \| oldsymbol{v}_r \|_2 = \| oldsymbol{w}_r \|_2 = 1$

▶ For an order N tensor, the decomposition generalizes as follows,

$$t_{i_1\ldots i_d} = \sum_{r=1}^R \prod_{j=1}^d u_{i_jr}^{(j)}$$

• Its rank is generally bounded by $R \leq n^{d-1}$

CP Decomposition Basics

- The CP decomposition is useful in a variety of contexts
 - If an exact decomposition with $R \ll n^{d-1}$ is expected to exist
 - If an approximate decomposition with $R \ll n^{d-1}$ is expected to exist
 - If the factor matrices from an approximate decomposition with R = O(1) are expected to contain information about the tensor data
 - CP a widely used tool, appearing in many domains of science and data analysis
- Basic properties and methods
 - Uniqueness (modulo normalization) is dependent on rank
 - Finding the CP rank of a tensor or computing the CP decomposition is NP-hard (even with R = 1)
 - Typical rank of tensors (likely rank of a random tensor) is generally less than the maximal possible rank
 - CP approximation as a nonlinear least squares (NLS) problem and NLS methods can be applied in a black-box fashion, but structure of decomposition motivates alternating least-squares (ALS) optimization

Tucker Decomposition

- The Tucker decomposition expresses an order d tensor via a smaller order d core tensor and d factor matrices
 - For a tensor $\mathcal{T} \in \mathbb{R}^{n \times n \times n}$, the Tucker decomposition is defined by core tensor $\mathcal{Z} \in \mathbb{R}^{R_1 \times R_2 \times R_3}$ and factor matrices U, V, and W with orthonormal columns, such that

$$t_{ijk} = \sum_{p=1}^{R_1} \sum_{q=1}^{R_2} \sum_{r=1}^{R_3} z_{pqr} u_{ip} v_{jq} w_{kr}$$

For general tensor order, the Tucker decomposition is defined as

$$t_{i_1...i_d} = \sum_{r_1=1}^{R_1} \cdots \sum_{r_d=1}^{R_d} z_{r_1...r_d} \prod_{j=1}^d u_{i_j r_j}^{(j)}$$

which can also be expressed as

$$\mathcal{T} = \mathcal{Z} \times_1 U^{(1)} \cdots \times_d U^{(d)}$$

- ▶ The Tucker ranks, (R_1, R_2, R_3) are each bounded by the respective tensor dimensions, in this case, $R_1, R_2, R_3 \leq n$
- In relation to CP, Tucker is formed by taking all combinations of tensor products between columns of factor matrices, while CP takes only disjoint products

Tucker Decomposition Basics

- The Tucker decomposition is used in many of the same contexts as CP
 - If an exact decomposition with each $R_j < n$ is expected to exist
 - If an approximate decomposition with $R_j < n$ is expected to exist
 - If the factor matrices from an approximate decomposition with R = O(1) are expected to contain information about the tensor data
 - Tucker is most often used for data compression and appears less often than CP in theoretical analysis
- Basic properties and methods
 - The Tucker decomposition is not unique (can pass transformations between core tensor and factor matrices, which also permit their orthogonalization)
 - Finding the best Tucker approximation is NP-hard (for R = 1, CP = Tucker)
 - If an exact decomposition exists, it can be computed by high-order SVD (HOSVD), which performs d SVDs on unfoldings
 - HOSVD obtains a good approximation with cost $O(n^{d+1})$ (reducible to $O(n^d R)$ via randomized SVD or QR with column pivoting)
 - Accuracy can be improved by iterative nonlinear optimization methods, such as high-order orthogonal iteration (HOOI)

Tensor Train Decomposition

- The tensor train decomposition expresses an order d tensor as a chain of products of order 2 or order 3 tensors
 - ▶ For an order 4 tensor, we can express the tensor train decomposition as

$$t_{ijkl} = \sum_{p,q,r} u_{ip} v_{pjq} w_{qkr} z_{rl}$$

More generally, the Tucker decomposition is defined as follows,

$$t_{i_1\dots i_d} = \sum_{r_1=1}^{R_1} \cdots \sum_{r_{d-1}=1}^{R_{d-1}} u_{i_1r_1}^{(1)} \left(\prod_{j=2}^{d-1} u_{r_{j-1}i_jr_j}^{(j)}\right) u_{r_{d-1}i_d}^{(d)}$$

 In physics literature, it is known as a matrix product state (MPS), as we can write it in the form,

$$t_{i_1...i_d} = \langle \boldsymbol{u}_{i_1}^{(1)}, \boldsymbol{U}_{i_2}^{(2)} \cdots \boldsymbol{U}_{i_{d-1}}^{(d-1)} \boldsymbol{u}_{i_d}^{(d)} \rangle$$

For an equidimensional tensor, the ranks are bounded as $R_j \leq \min(n^j, n^{d-j})$

Tensor Train Decomposition Basics

- Tensor train has applications in quantum simulation and in numerical PDEs
 - Its useful whenever the tensor is low-rank or approximately low-rank, i.e., $R_j R_{j+1} < n^{d-1}$ for all j < d-1
 - MPS (tensor train) and extensions are widely used to approximate quantum systems with $\Theta(d)$ particles/spins
 - Often the MPS is optimized relative to an implicit operator (often of a similar form, referred to as the matrix product operator (MPO))
 - Operators and solutions to some standard numerical PDEs admit tensor-train approximations that yield exponential compression
- Basic properties and methods
 - The tensor train decomposition is not unique (can pass transformations, permitting orthogonalization into canonical forms)
 - Approximation with tensor train is NP hard (for R = 1, CP = Tucker = TT)
 - If an exact decomposition exists, it can be computed by tensor train SVD (TTSVD), which performs d 1 SVDs
 - TTSVD can be done with the cost $O(n^{d+1})$ or $O(n^d R)$ with faster low-rank SVD
 - Iterative (alternating) optimization is generally used when optimizing tensor train relative to an implicit operator or to refine TTSVD

Summary of Tensor Decomposition Basics

We can compare the aforementioned decomposition for an order d tensor with all dimensions equal to n and all decomposition ranks equal to R

decomposition	СР	Tucker	tensor train
size	dnR	$dnR + R^d$	$2nR + (d-2)nR^2$
uniqueness	if $R \leqslant (3n-2)/2$	no	no
orthogonalizability	none	partial	partial
exact decomposition	NP hard	$O(n^{d+1})$	$O(n^{d+1})$
approximation	NP hard	NP hard	NP hard
typical method	ALS	HOSVD	TT-ALS (implicit)