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CP Decomposition Rank
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition

expresses an order d tensor in terms of d factor matrices



Tensor Rank Properties
§ Tensor rank does not satisfy many of the properties of matrix rank



Typical Rank and Generic Rank
§ When there is only a single typical tensor rank, it is the generic rank



Uniqueness Sufficient Conditions
§ Unlike the low-rank matrix case, the CP decomposition can be unique



Uniqueness Necessary Conditions
§ Necessary conditions for uniqueness of the CP decomposition also exist



Degeneracy
§ The best rank-k approximation may not exist, a problem known as

degeneracy of a tensor



Border Rank
§ Degeneracy motivates an approximate notion of rank, namely border rank



Approximation by CP Decomposition
§ Approximation via CP decomposition is a nonlinear optimization problem



Alternating Least Squares Algorithm
§ The standard approach for finding an approximate or exact CP

decomposition of a tensor is the alternating least squares (ALS) algorithm



Properties of Alternating Least Squares for CP



Alternating Least Squares for Tucker Decomposition
§ For Tucker decomposition, an analogous optimization procedure to ALS is

referred to as high-order orthogonal iteration (HOOI)



Dimension Trees for ALS
§ The cost of ALS can be reduced by amortizing computation common terms



Gauss-Newton Algorithm
§ ALS generally achieves linear convergence, while Newton-based methods

can converge quadratically



Gauss-Newton for CP Decomposition
§ CP decomposition for order d “ 3 tensors (d ą 3 is similar) minimizes



Gauss-Newton for CP Decomposition

§ A step of Gauss-Newton requires solving a linear system with H
§ Cholesky of H requires Opd2n2R2q memory and cost Opd3n3R3q

§ Matrix-vector product with H can be computed with cost Opd2nR2q

§ Can use CG method with implicit matrix-vector product1

§ Each product u “ Hv can be performed using tensor contractions each with
cost OpnR2q

§ H admits an effective block-diagonal preconditioner (inverse of each block
applies step of ALS)

1P. Tichavsky, A. H. Phan, and A. Cichocki, 2013



Alternating Mahalanobis Distance Minimization (AMDM)
§ High-order convergence can be achieved for low-rank exact CP using the

AMDM algorithm



Computing the CP Rank
Exact algorithms for bounding the CP rank of a tensor can be phrased via
methods for polynomial systems of equations2

2Aliabadi, Mohsen, and Shmuel Friedland. ”On the complexity of finding tensor ranks.”
Communications on Applied Mathematics and Computation 3.2 (2021): 281-289.



Effective Nullstellensatz
Hilbert’s weak Nullstellensatz is a characterization of polynomial equations3 This

characterization reduces polynomial systems to linear equations

3Following Terence Tao’s formulation of this theorem
https://terrytao.wordpress.com/2007/11/26/hilberts-nullstellensatz/ (accessed Oct. 2024).

https://terrytao.wordpress.com/2007/11/26/hilberts-nullstellensatz/


Tensor Completion
§ The tensor completion problem seeks to build a model (e.g., CP

decomposition) for a partially-observed tensor

§ The problem generalized matrix completion, a problem partly popularized by
the Netflix prize collaborative filtering problem



CP Tensor Completion Gradient and Hessian
§ The gradient of the tensor completion objective function is sparsified

according to the set of observed entries

§ ALS for tensor decomposition solves quadratic optimization problem for
each row of each factor matrix, in the completion case, Newton’s method on
these subproblems yields different Hessians



Methods for CP Tensor Completion
§ ALS for tensor completion with CP decomposition incurs additional cost

§ Alternative methods for tensor completion include coordinate descent and
stochastic gradient descent



Coordinate Descent for CP Tensor Completion
§ Coordinate descent avoids the need to solve linear systems of equations



Sparse Tensor Contractions
§ Tensor completion and sparse tensor decomposition require operations on

sparse tensors

§ Sparse tensor contractions often correspond to products of hypersparse
matrices, i.e., matrices with mostly zero rows



Sparse Tensor Formats
§ The overhead of transposition, and non-standard nature of the arising

sparse matrix products, motivates sparse data structures for tensors that
are suitable for tensor contractions of interest

§ The compressed sparse fiber (CSF) format provides an effective
representation for sparse tensors



Operations in Compressed Format

§ CSF permits efficient execution of important sparse tensor kernels
§ Analogous to CSR format, which enables efficient implementation of the sparse

matrix vector product
§ where row[i] stores a list of column indices and nonzeros in the ith row of A

for i in range(n):
for (a_ij ,j) in row[i]:

y[i] += a_ij * x[j]

§ In CSF format, a multilinear function evaluation f pT qpx,yq “ Tp1qpx d yq can
be implemented as

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for (k,t_ijk) in T_ij:
z[i] += t_ijk * x[j] * y[k]



MTTKRP in Compressed Format
§ MTTKRP and CSF pose additional implementation opportunities and

challenges
§ MTTKRP uir “

ř

j,k tijkvjrwkr can be implemented by adding a loop over r to
our code for f pT q, but would then require 3mr operations if m is the number of
nonzeros in T , can reduce to 2mr by amortization

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for r in range(R):
f_ij = 0
for (k,t_ijk) in T_ij:

f_ij += t_ijk * w[k,r]
u[i,r] = f_ij * v[j,r]

§ However, this amortization is harder (requires storage or iteration overheads) if
the index i is a leaf node in the CSF tree

§ Similar challenges in achieving good reuse and obtaining good arithmetic
intensity arise in implementation of other kernels, such as TTMc



All-at-once Contraction

§ When working with sparse tensors, it is often more efficient to contract
multiple operands in an all-at-once fashion



Complexity of Sparse Tensor Contractions
§ The cost of a contraction of two sparse tensors depends on the position of

the nonzeros

§ The cost of a contraction of a single sparse tensor with dense tensors can be
quantified more directly



Complexity of Contractions with a Single Sparse Tensor
In general, when contracting a single sparse tensor with many dense tensors
partial sums can be amortized



Constrained Tensor Decomposition

§ Many applications of tensor decomposition in data science, feature
additional structure, which can be enforced by constraints



Nonnegative Tensor Factorization

§ Nonnegative tensor factorization (NTF), such as CP decomposition with
T ě 0 and U ,V ,W ě 0 are widespread and a few classes of algorithms
have been developed



Nonnegative Matrix Factorization

§ NTF algorithms with alternating updates have a close correspondence with
alternating update algorithms for Nonnegative matrix factorization (NMF)4

4Gillis, Nicolas. ”The why and how of nonnegative matrix factorization.” Regularization,
optimization, kernels, and support vector machines 12.257 (2014): 257-291.



Optimality Conditions for NMF
§ The optimality conditions for NMF are

§ These follow from the KKT conditions, including complementarity slackness



Coordinate Descent for NMF and NTF

§ Coordinate descent gives optimal closed-form updates for variables in NMF
and NTF



Alternating Optimization for NMF and NTF

§ If all except one factor is fixed, the resulting subproblem is an
inequality-constrained convex optimization problem



Generalized Tensor Decomposition
§ Aside from addition of constraints, the objective function may be modified by

using different elementwise loss functions

§ Some loss function admit ALS-like algorithms, while others may require
gradient-based optimization
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