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CP Decomposition Rank
§ The canonical polyadic or CANDECOMP/PARAFAC (CP) decomposition

expresses an order d tensor in terms of d factor matrices
§ For T P Rn1ˆ¨¨¨ˆnd , a rank R CP decomposition is defined by matrices

U piq P RniˆR so that

ti1...id “

R
ÿ

r“1
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u
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ijr

§ The CP decomposition is also often denoted by

T “ rrU p1q, . . . ,U pdqss

§ First proposed by Hitchcock in 1927
§ Given a tensor, the smallest R for which it has a CP decomposition is the tensor

rank, also sometimes referred to as the CP rank or canonical rank
§ Finding the CP rank and associated decomposition enables automatic derivation

of bilinear algorithms as reviewed in the prior lecture
§ Early parts of this lectures mostly follow T. Kolda and B. Bader ”Tensor

Decompositions and Applications”, SIAM Review 2009.



Tensor Rank Properties
§ Tensor rank does not satisfy many of the properties of matrix rank

§ Rank of a real-valued tensor can be different over the complex field, e.g., for

T “
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which is a perfectly conditioned tensor, the rank over R is 3 but over C it is 2,
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§ The maximal possible rank of tensors of particular dimensions is often unequal
to the typical tensor rank, which is any rank for which the set of tensors of a
given size with that rank has positive volume

§ 2 ˆ 2 ˆ 2 tensors have typical ranks 2 (79%) and 3 (21%) over R, and typical
rank 2 over C



Typical Rank and Generic Rank
§ When there is only a single typical tensor rank, it is the generic rank

§ For decomposition over C, tensors have a generic rank
§ For symmetric tensors, the symmetric rank (all CP factors same) is equal to the

CP rank if the factor matrices are full rank [Comon, Golub, Lim, Mourrain, 2008]
§ If we restrict to symmetric tensors of order d ą 2 and dimension n, the generic

rank over C is
R “

Rˆ

n` d´ 1

d

˙

{n

V

except when pd, nq P tp3, 5q, p4, 3q, p4, 4q, p4, 5qu in which cases it should be
increased by one (Alexander–Hirschowitz theorem)

§ This rank bound makes sense, as the total amount of information in a single
factor matrix is nR «

`

n`d´1
d

˘

, which matches the number of unique entries in
the symmetric tensor

§ For maximal rank of an n1 ˆ n2 ˆ n3 tensor, the maximal rank is bounded
(weakly) by R ď minpn1n2, n1n3, n2n3q, which follows by the same intuition



Uniqueness Sufficient Conditions
§ Unlike the low-rank matrix case, the CP decomposition can be unique

§ In the matrix case, given A “ UV T , for any invertible M we can obtain a new
factorization A “ UMpV M´1qT

§ In CP decomposition, the indeterminacy is generally limited to permutation of
the R rank-1 factors and scaling of their components

§ Modulo permutation and scaling, strong conditions exist on uniqueness of the
CP decomposition

§ Define the k-rank of a matrix as the maximum value of k such that any k
columns of the matrix are linearly independent

§ For an order 3 tensor with CP decomposition rrA,B,Css where the factor
matrices have k-ranks kA, kB , and kC , a sufficient condition for uniqueness is

kA ` kB ` kC ě 2R ` 2

§ For order d tensors whose CP decomposition is composed of matrices with has k
ranks k1, . . . , kd, the sufficient condition is

d
ÿ

i“1

ki ě 2R ` pd´ 1q



Uniqueness Necessary Conditions

§ Necessary conditions for uniqueness of the CP decomposition also exist
§ A simple necessary condition for uniqueness is

min
lPt1,...,du

´

d
ź

i“1,i‰l

rankpU piqq

¯

ě R

§ This condition stems from the more general restriction that

min
lPt1,...,du

rank
´ d

ä

i“1,i‰l

U piq
¯

“ R

§ When one of the d Khatri-Rao products is rank deficient, multiple (infinite)
choices of the lth factor matrices must bring the residual to zero



Degeneracy

§ The best rank-k approximation may not exist, a problem known as
degeneracy of a tensor

§ Consider a rank 3 tensor

T “ a1 b b1 b c2 ` a1 b b2 b c1 ` a2 b b1 b c1

§ The tensor can be approximated arbitrarily closely by

Wpαq
“ αpa1 `

1

α
a2q b pb1 `

1

α
b2q b pc1 `

1

α
c2q ´ αa1 b b1 b c1

in particular
lim
αÑ8

}Wpαq
´ T } “ 0

§ Consequently, the best rank-2 approximation does not exist for this tensor, as in
the limit Wpαq converges to an order 3 tensor



Border Rank

§ Degeneracy motivates an approximate notion of rank, namely border rank
§ The border rank of a tensor T is defined as the smallest R such that, for any
ϵ ą 0, there exists a rank R tensor W such that

}T ´ W} ă ϵ

§ The border rank is always less than the rank of a tensor, but can also be smaller
§ The concept of border rank has been intensively used to find fast bilinear

algorithms for matrix multiplication
§ The border rank and rank of the 4 ˆ 4 ˆ 4 multiplication tensor are both 7,

yielding Strassen’s algorithm
§ For the 9 ˆ 9 ˆ 9 tensor defining multiplication of 3 ˆ 3 matrices, determining

rank and border rank is an open problem, the rank is between 19 and 23, while
the border rank is between 14 and 21



Approximation by CP Decomposition
§ Approximation via CP decomposition is a nonlinear optimization problem

§ Given order d tensor T with all dimensions equal to n, the rank-R CP
approximation problem can be written as

min
Up1q,...,UpnqPRnˆR

1

2
}T ´ rrU p1q, . . . ,U pdqss}2F

loooooooooooooooomoooooooooooooooon

ϕpUp1q,...,Updqq

§ The gradient of this objective function is

∇ϕ “
“

dϕ{dU p1q . . . dϕ{dU pdq
‰

§ Each component of the gradient has the form

dϕ

dU piq
pU p1q, . . . ,U pdqq “ U piq ˚d

j“1,j‰i U
pjqTU pjq ´ T piq

d
ä

j“1,j‰i

U pjq

looooooooomooooooooon

MTTKRP

§ Unless R is very large, computing dϕ
dUpiq pU p1q, . . . ,U pdqq is not much cheaper

than minimizing ϕ w.r.t. U piq by solving for U piq in dϕ
dUpiq pU p1q, . . . ,U pdqq “ 0



Alternating Least Squares Algorithm
§ The standard approach for finding an approximate or exact CP

decomposition of a tensor is the alternating least squares (ALS) algorithm
§ Consider rank R decomposition of a tensor T P Rnˆnˆn over R
§ A sweep takes as input rrU pkq,V pkq,W pkqss solves 3 quadratic optimization

problems to obtain rrU pk`1q,V pk`1q,W pk`1qss, updating each factor matrix in
sequence, typically via the normal equations:

pV pkqTV pkq ˚ W pkqTW pkqqU pk`1q “ Tp1qpV pkq d W pkqq

pU pk`1qTU pk`1q ˚ W pkqTW pkqqV pk`1q “ Tp2qpU pk`1q d W pkqq

pU pk`1qTU pk`1q ˚ V pk`1qTV pk`1qqW pk`1q “ Tp3qpU pk`1q d V pk`1qq

§ Residual decreases monotonically, since the subproblems in each subset of nR
variables are quadratic

§ Forming the linear equations has cost OpdnR2q while forming the
right-hand-sides requires an MTTKRP with cost OpndRq



Properties of Alternating Least Squares for CP

§ CP-ALS achieves linear local convergence to local minima of our objective ϕ
§ this follows from the equivalence of the optimality conditions (vanishing

gradient) and the ALS update rule
§ no global convergence guarantees are available, and in practice algorithm

convergence can stagnate, typically due to the factor matrix iterates becoming
ill-conditioned

§ CP-ALS guarantees monotonic decrease in residual
§ the exact minimizer is found for each quadratic subproblem, which cannot be

worse than the previous choice
§ the equations for each subproblem are formed by a Khatri-Rao product,

which makes subproblems amenable to fast approximate methods



Alternating Least Squares for Tucker Decomposition
§ For Tucker decomposition, an analogous optimization procedure to ALS is

referred to as high-order orthogonal iteration (HOOI)
§ Each component of the derivative of the Tucker approximation objective

function with respect to the product of a factor matrix and the core tensor is a
TTMc (as opposed to MTTKRP in the CP case)

ψpZ,U ,V ,W q “
1

2
ptijk ´

ÿ

pqr

zpqruipvjqwkrq2

dψ

dpZ ˆ1 Uq
pZ,U ,V ,W q “

ÿ

j,k

tijkvjqwkr ´
ÿ

pq1r1

zpqruip p
ÿ

j

vjq1vjqq

looooomooooon

δpq,q1q

p
ÿ

k

wkr1wkrq

loooooomoooooon

δpr,r1q

§ Consequently, we can find the minimizing Z ˆ1 U by SVD of the mode-1
unfolding of the TTMC T ˆ2 V

T ˆ3 W
T , which is a sˆR2 matrix

§ Optimizing for a single factor matrix in this way costs OpsdR ` sRdq

§ A sweep of HOOI requires forming N such TTMcs and computing their SVDs



Dimension Trees for ALS
§ The cost of ALS can be reduced by amortizing computation common terms

§ The cost of ALS is typically dominated by MTTKRPs, d of which are computed for
each sweep, for d “ 3,

Tp1qpV pkq d W pkqq,Tp2qpU pk`1q d W pkqq,Tp3qpU pk`1q d V pk`1qq

§ Note that given Z “ T ˆ3 W
pkqT , we can compute the first two MTTKRPs with

Ops2Rq cost, since
ÿ

j,l

tijlv
pkq

jr w
pkq

lr “
ÿ

j

zijrv
pkq

jr and
ÿ

j,l

tijlu
pk`1q

ir w
pkq

lr “
ÿ

i

zijru
pk`1q

ir

§ In general, we can reuse a single TTM to compute the next d´ 1 sets of
right-hand-sides (MTTKRPs) in ALS (in this sweep or the next sweep)

§ The amortized cost of each ALS sweep (assuming Strassen-like
matrix-multiplication algorithms are not used) is then given by
2d
d´1s

dR `Opdsd´1Rq `OpdR3q where the final term comes from Cholesky
factorization of the matrices Gpiq “ ˚d

j“1,j‰iU
pjqTU pjq



Gauss-Newton Algorithm
§ ALS generally achieves linear convergence, while Newton-based methods

can converge quadratically
§ Derive these by casting CP as a nonlinear least squares problem,

ϕpxq “
1

2
}y ´ fpxq

loooomoooon

rpxq

}2

§ Newton’s method computes xpk`1q “ xpkq ´ Hϕpxq´1∇ϕpxq

§ For nonlinear least squares problems, the gradient and Hessian are

∇ϕpxq “ JT
r pxqrpxq,

Hϕpxq “ JT
r pxqJrpxq `

ÿ

i

ripxqHripxq

§ The Gauss-Newton method approximates Hϕpxq « JT
r pxqJrpxq, so

xpk`1q “ xpkq ´ spkq, spkq “ pJT
r pxpkqqJrpxpkqqq´1JT

r pxpkqqrpxpkqq,

Jrpxpkqqspkq – rpxpkqq



Gauss-Newton for CP Decomposition
§ CP decomposition for order d “ 3 tensors (d ą 3 is similar) minimizes

ϕpU p1q,U p2q,U p3qq “
1

2

ÿ

ijk

`

tijk ´

R
ÿ

r“1

u
p1q

ir u
p2q

jr u
p3q

kr

˘2

§ The Gauss-Newton approximate Hessian is dnR ˆ dnR,

H “

»

—

–

Hp1,1q ¨ ¨ ¨ Hp1,dq

...
. . .

...
Hpd,1q ¨ ¨ ¨ Hpd,dq

fi

ffi

fl

, where Hpq,qq “ Gpn,nq b I

while for q ‰ p, h
pq,pq

krlz “ u
pqq

kz u
ppq

lr g
pq,pq
rz ,

where in both cases gpn,pq
rz “

d
ź

m“1,m‰q,p

˜

ÿ

i

u
pmq

ir u
pmq

iz

¸



Gauss-Newton for CP Decomposition

§ A step of Gauss-Newton requires solving a linear system with H
§ Cholesky of H requires Opd2n2R2q memory and cost Opd3n3R3q

§ Matrix-vector product with H can be computed with cost Opd2nR2q

§ Can use CG method with implicit matrix-vector product1

§ Each product u “ Hv can be performed using tensor contractions each with
cost OpnR2q

§ H admits an effective block-diagonal preconditioner (inverse of each block
applies step of ALS)

1P. Tichavsky, A. H. Phan, and A. Cichocki, 2013



Alternating Mahalanobis Distance Minimization (AMDM)
§ High-order convergence can be achieved for low-rank exact CP using the

AMDM algorithm
§ For an order tensor T , given iterates U pkq, V pkq, and W pkq, AMDM computes

U pk`1q “ Tp1qpV pkq`T d W pkq`T q

V pk`1q “ Tp2qpU pk`1q`T d W pkq`T q

W pk`1q “ Tp3qpU pk`1q`T d V pk`1q`T q

§ A sketch of the high-order convergence proof is as follows
§ Let T “ rrU ,V ,W ss then

Tp1qppV `T ` δV q d pW`T ` δW qq

“ U ` UpI ˚ δV TV q ` UpI ˚ δW TW q `Op}δV }}δW }q

where the first two error terms amount to rescaling of the columns of A, while
the last term controls convergence and scales with the product of the errors in
the other factors.



Computing the CP Rank
Exact algorithms for bounding the CP rank of a tensor can be phrased via
methods for polynomial systems of equations2

§ A general n-variate polynomial of degree k has the form

fpx1, . . . , xnq “

k
ÿ

i1“0

¨ ¨ ¨

k
ÿ

in“0

ci1,...,inx
i1
1 ¨ ¨ ¨xinn

§ A CP decomposition of an order d tensor T corresponds to a set of
polynomial equations in the entries of the factor matrices Xp1q, . . . ,Xpdq,

@i “ pi1, . . . , idq P t1, . . . , nud, ti ´

R
ÿ

r“1

d
ź

j“1

x
pjq

ijr

loooooooomoooooooon

fipXp1q,...,Xpdqq

“ 0

§ The degree of each fi is d.
2Aliabadi, Mohsen, and Shmuel Friedland. ”On the complexity of finding tensor ranks.”

Communications on Applied Mathematics and Computation 3.2 (2021): 281-289.



Effective Nullstellensatz
Hilbert’s weak Nullstellensatz is a characterization of polynomial equations3

§ Let f1, . . . , fm be k-variate complex polynomials of degree at most d, then
exactly one of the following two statements hold

1. Dx P Ck, s.t., f1pxq “ ¨ ¨ ¨ “ fmpxq “ 0
2. Dg1, . . . gm where each gi is a complex polynomial, such that

řm
i“1 gifi “ 1

§ in the second case, the degree of each figi is at most dk if k ď m and d ě 3
(such upper bounds are referred to as an ‘effective Nullstellensatz’)

This characterization reduces polynomial systems to linear equations
§ The coefficients of

řm
i“1 gifi can be computed convolution, or equivalently the

product of a structured matrix defined from the coefficients of the fis and a
vector of coefficients of each of the gi

§ Using FFT of dimension dk leads to a complexity of Opkdkq

§ For CP decomposition of rank R of an order d tensor with all dimension equal
to n, we have k “ dnR

3Following Terence Tao’s formulation of this theorem
https://terrytao.wordpress.com/2007/11/26/hilberts-nullstellensatz/ (accessed Oct. 2024).

https://terrytao.wordpress.com/2007/11/26/hilberts-nullstellensatz/


Tensor Completion
§ The tensor completion problem seeks to build a model (e.g., CP

decomposition) for a partially-observed tensor
§ Completion differs from decomposition of a sparse tensor with zeros for entries

that are unobserved, as the CP decomposition would be fitting the zeros
§ For an order three tensor T P Rnˆnˆn, given a set of observed entries tijk for

pi, j, kq P Ω, we seek to minimize

fpU ,V ,W q “
ÿ

pi,j,kqPΩ

ptijk ´
ÿ

r

uirvjrwkrq2 ` λ2p}U}22 ` }V }22 ` }W }22q

§ The problem generalized matrix completion, a problem partly popularized by
the Netflix prize collaborative filtering problem

§ This problem involved building a model for predicting user ratings of movies,
given the set of movies they have already rated, with each rating corresponding
to a tuple (user, movie)

§ These can be enumerated in a tensor if including additional attributes, such as
time of day



CP Tensor Completion Gradient and Hessian
§ The gradient of the tensor completion objective function is sparsified

according to the set of observed entries
§ Lets restrict attention to optimizing for the ith row of the first factor matrix,

define Ωi so that pj, kq P Ωi if s pi, j, kq P Ω, then

ϕpuiq “
ÿ

pj,kqPΩi

ptijk ´ xui,vj ,wkyq2 ` λ}ui}
2
2 where xx,y, zy “

ÿ

r

xryrzr

§ Consider the derivative with respect to the ith row of the first factor matrix

∇ϕpuiq “
dϕ

dui
puiq “ 2

ÿ

pj,kqPΩi

pvj ˚ wkqpxui,vj ,wky ´ tijkq ` 2λui

§ ALS for tensor decomposition solves quadratic optimization problem for
each row of each factor matrix, in the completion case, Newton’s method on
these subproblems yields different Hessians

§ The Hessian H
pϕq

i depends on the set of entries Ωi “ tpj, kq : Dpi, j, kq P Ωu,

H
pϕq

i “
dϕ2

duidui
puiq “

ÿ

pj,kqPΩi

pvj ˚ wkqpvj ˚ wkqT ` 2λI



Methods for CP Tensor Completion
§ ALS for tensor completion with CP decomposition incurs additional cost

§ For each pi, j, kq P Ω, need to accumulate pvj ˚ wkqpvj ˚ wkqT to H
pϕq

i

§ While the n outer products can be amortized with cost OpnR2q, no easy way to
do so for their partial sums, leading to cost Op|Ω|R2q

§ Alternative methods for tensor completion include coordinate descent and
stochastic gradient descent

§ Stochastic gradient descent (SGD) would compute subgradients for each pi, j, kq

which are summands in the sum over Ωi in ∇ϕpuiq

§ SGD can be implemented efficiently, by computing a sum over a random set of
subgradients at a time, via subsampling of Ω

§ Coordinate descent optimizes an entry of each factor matrix at a time
§ Variants of coordinate descent select different orderings of entries to optimize,

e.g., alternating among columns of factor matrices then factor matrices or vice
versa



Coordinate Descent for CP Tensor Completion
§ Coordinate descent avoids the need to solve linear systems of equations

§ The coordinate-wise objective function is

ψpuirq “
ÿ

pj,kqPΩi

pρ
prq

ijk´uirvjrwkrq2`λu2ir where ρprq

ijk “ tijk´xui,vj ,wky`uirvirwkr

above ρprq

ijk is equal to an entry of the residual tensor with the rth rank-one
component of the CP decomposition excluded

§ Taking its derivative, we obtain

ψ1puirq “ ´2
ÿ

pj,kqPΩi

vjrwkrpρ
prq

ijk ´ uirvjrwkrq ` 2λuir

§ Setting this derivative to zero, we can solve for uir

u
pnewq

ir “

ř

pj,kqPΩi
vjrwkrρ

prq

ijk

λ`
ř

pj,kqPΩi
v2jrw

2
kr

§ This can be implemented efficiently by keeping track of a residual tensor and
obtaining ρprq

ijk as a modification thereof when working on the rth column



Sparse Tensor Contractions
§ Tensor completion and sparse tensor decomposition require operations on

sparse tensors
§ In many publicly available sparse tensor datasets, the density is extremely low,

e.g., 10´7, i.e., there can be Opnq nonzeros in interesting nˆ nˆ n tensors
§ For both decomposition and completion, tensor sparsity does not generally

imply sparsity of CP or Tucker factors, and these are typically assumed to be
dense

§ Sparse tensor contractions often correspond to products of hypersparse
matrices, i.e., matrices with mostly zero rows

§ Consider TTM with a nˆ nˆ n tensor T containing Opnq nonzeros, T T
p1q

M , the
matrix T T

p1q
has Opnq nonzeros, but n2 rows, while T T

p1q
M has Opnq dense rows

and all other Opn2q rows are zero
§ To reduce sparse tensor contractions to sparse matrix multiplication kernels,

need support for hypersparse matrix formats (e.g., compressed sparse-row
(CSR) format would require Θpn2q storage for Tp1q) and ideally specialized
formats for matrices such as T T

p1q
M (e.g., dense matrix consisting of nonzero

rows and vector of row indices)



Sparse Tensor Formats
§ The overhead of transposition, and non-standard nature of the arising

sparse matrix products, motivates sparse data structures for tensors that
are suitable for tensor contractions of interest

§ Particularly important, especially for tensor decomposition, are MTTKRP
(suffices to CP ALS) and TTMc (suffices for HOOI)

§ TTM is also prevalent, but is a less attractive primitive in the sparse case than
MTTKRP and TTMc, as these yield dense, low-order outputs, while the output of
TTM can be sparse and larger than the starting tensor

§ The compressed sparse fiber (CSF) format provides an effective
representation for sparse tensors

§ CSF can be visualized as a tree (diagram taken from original CSF paper, by
Shaden Smith and George Karpis, IAˆ3, 2015)



Operations in Compressed Format

§ CSF permits efficient execution of important sparse tensor kernels
§ Analogous to CSR format, which enables efficient implementation of the sparse

matrix vector product
§ where row[i] stores a list of column indices and nonzeros in the ith row of A

for i in range(n):
for (a_ij ,j) in row[i]:

y[i] += a_ij * x[j]

§ In CSF format, a multilinear function evaluation f pT qpx,yq “ Tp1qpx d yq can
be implemented as

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for (k,t_ijk) in T_ij:
z[i] += t_ijk * x[j] * y[k]



MTTKRP in Compressed Format
§ MTTKRP and CSF pose additional implementation opportunities and

challenges
§ MTTKRP uir “

ř

j,k tijkvjrwkr can be implemented by adding a loop over r to
our code for f pT q, but would then require 3mr operations if m is the number of
nonzeros in T , can reduce to 2mr by amortization

for (i,T_i) in T_CSF:
for (j,T_ij) in T_i:

for r in range(R):
f_ij = 0
for (k,t_ijk) in T_ij:

f_ij += t_ijk * w[k,r]
u[i,r] = f_ij * v[j,r]

§ However, this amortization is harder (requires storage or iteration overheads) if
the index i is a leaf node in the CSF tree

§ Similar challenges in achieving good reuse and obtaining good arithmetic
intensity arise in implementation of other kernels, such as TTMc



All-at-once Contraction
§ When working with sparse tensors, it is often more efficient to contract

multiple operands in an all-at-once fashion
§ Given chain of matrix products ABC ¨ ¨ ¨ , dimension of overall iteration space

scales with number of matrices, but by contracting pairwise, obtain cubic cost in
matrix dimension with linear dependence on number of matrices

§ A case when such pairwise contraction is not a good idea, is the sampled
dense-dense matrix-multiplication (SDDMM),

cij “

R
ÿ

r

aijuirvjr ô C “ A ˚ pUV T q

where A is sparse with m nonzeros, while U and V are dense
§ Since the sparsity pattern of C is the same as of A, suffices to iterate over

nonzeros of A and multiply each by inner product of a row of U and a row of V ,
with cost OpmRq

§ Pairwise contraction is inefficient, contracting first A with U would yield a
third-order intermediate, while contracting U with V T would have cost Opn2Rq

§ Generalizing SDDMM to higher order gives the tensor-times tensor-product
(TTTP), an application of which is computing the residual in tensor completion



Complexity of Sparse Tensor Contractions

§ The cost of a contraction of two sparse tensors depends on the position of
the nonzeros

§ The product of two square matrices with n nonzeros may require n2 work (outer
product)

§ The product of two square matrices with n2{2 nonzeros may require no work
(consider AB where A “ rA1, 0s, B “ r0,B1sT )

§ In general, the number of nontrivial products is not easy to infer cheaply from
matrix structure

§ The cost of a contraction of a single sparse tensor with dense tensors can be
quantified more directly

§ A simple bound follows from fixing the indices of the sparse tensor for each
nonzero, each of which reduces to a dense tensor contraction

§ For MTTKRP, this yields OpnnzpT qRq

§ For TTMc with d ´ 1 matrices of rank R, this yields OpnnzpT qRd´1
q



Complexity of Contractions with a Single Sparse Tensor

In general, when contracting a single sparse tensor with many dense tensors
partial sums can be amortized

§ Assuming each dense tensor is contracted with exactly one mode of the
sparse tensor and the contractions are done starting from the lowest level of
a CSF tree format, the cost can be quantified as

CpT ,A1, . . . ,Akq

k
ÿ

i“1

CipnnzipT q,Akq

where nnzipT q is the number of nodes in the i level of the CSF tree starting
from the leaves, so nnz1pT q “ nnzpT q, and Ci is the cost of the ith contraction
with the given number of nonzeros in T (depends on how Ak is contracted
and the order of iteration over the indices)



Constrained Tensor Decomposition

§ Many applications of tensor decomposition in data science, feature
additional structure, which can be enforced by constraints

§ A basic and common constraint is nonnegativity of factor matrices, which often
makes sense when working with a tensor that is nonnegative (e.g., count data)

§ Most of the methods we’ve discussed can be generalized to handle
nonnegativity, e.g., one could perform ALS by solving each subproblem subject
to nonnegativity constraints

§ Another common constraint is factor matrix orthogonality, which can be
incorporated similarly into subproblems

§ For symmetric tensors, repeating factors are often desired, which can be
formulated via constraints or by using an appropriate method (two good
alternatives are ALS with subiterations to converge updates to repeated factors,
or Gauss-Newton, which automatically preserves repeating factors when
working with a symmetric tensor)



Nonnegative Tensor Factorization
§ Nonnegative tensor factorization (NTF), such as CP decomposition with
T ě 0 and U ,V ,W ě 0 are widespread and a few classes of algorithms
have been developed

§ Optimization for one of U , V , or W (while the other two are fixed) is a convex
optimization problem

§ Many methods based on alternating optimization/updates in the style of ALS
§ A basic approach is to ‘clip’ result of ALS step so that each factor matrix is

nonnegative after update
§ Block coordinate descent (BCD) methods update on or more columns of U , V ,

or W based on a coordinate-descent-like update rule
§ Proximal gradient methods are multicolumn BCD methods, which approximately

solve each subproblem by minimizing a constrained objective derived based on
a proximally projected gradient

§ All-at-once methods that update all factor matrices, such as Gauss-Newton
with an augmented Lagrangian objective function (sequential quadratic
programming)



Nonnegative Matrix Factorization
§ NTF algorithms with alternating updates have a close correspondence with

alternating update algorithms for Nonnegative matrix factorization (NMF)4

§ The rank-r NMF problem is to find, given matrix A P Rnˆn
` , the minimizer

U ,V P Rnˆr
` to

f pAqpU ,V q “ }A ´ UV T }F

§ The NMF hard is NP hard, for exact NMF Opn2r
2

q-time algorithms exist
§ Solutions to NMF are generally non-unique, though for low-rank CP NTF

uniqueness could hold based on previously described conditions
§ Alternating optimization problems for NTF are essentially the same as in NMF,

for
gpT qpU ,V ,W q “ }T ´ rrU ,V ,W ss}F

minimizing ϕpT q

V ,W pUq “ gpT qpU ,V ,W q is the same as the NMF subproblem
ϕ

pTp1qq

V dW pUq “ f pTp1qqpU ,V d W q

4Gillis, Nicolas. ”The why and how of nonnegative matrix factorization.” Regularization,
optimization, kernels, and support vector machines 12.257 (2014): 257-291.



Optimality Conditions for NMF
§ The optimality conditions for NMF are

U ,V ě 0,
df pAq

dU
pU ,V q “ UV V T ´ AV ě 0 and df pAq

dU
pU ,V q ˚ U “ 0

df pAq

dV
pU ,V q “ V UUT ´ AU ě 0 and df pAq

dV
pU ,V q ˚ V “ 0.

§ These follow from the KKT conditions, including complementarity slackness
§ The Lagrangian function is

LpAqpU ,V ,λU ,λV q “ f pAqpU ,V q ´ xλU ,Uy ´ xλV ,V y

§ Its partial derivatives vanish at any local minima, which gives that

λU “
df pAq

dU
pU ,V q, λV “

df pAq

dV
pU ,V q

§ Further the KKT conditions give that U ,V ,λU ,λV ě 0 and, by complementarity
slackness, xλU ,Uy “ 0. Since all nonzero terms in this inner product have the
same sign, we also then have λU ˚ U “ 0, and similar for V .



Coordinate Descent for NMF and NTF
§ Coordinate descent gives optimal closed-form updates for variables in NMF

and NTF
§ We can write an optimization subproblem for a single column ui as minimizing

ϕ
pAq

i puiq “ }A ´

R
ÿ

r“1

urv
T
r }2 s.t. ui ě 0

unew
i “ |ui `

Avi ´ UV Tvi

vT
i vi

|`

where y “ |x|` gives yi “ xi if xi ą 0 and yi “ 0 otherwise
§ Given ρpiq “ A ´ UV T ` uiv

T
i “ A ´

ř

j‰i ujv
T
j , if columns of V are

normalized, we can alternatively write the update as

unew
i “

ˇ

ˇ

ˇ

ˇ

ρpiqvi

vT
i vi

ˇ

ˇ

ˇ

ˇ

`



Alternating Optimization for NMF and NTF

§ If all except one factor is fixed, the resulting subproblem is an
inequality-constrained convex optimization problem

§ With V fixed the ith row of U , uT
i gives the subproblem

ϕ
pAq

i puT
i q “ }V TaT

i ´ ui}2 s.t. ui ě 0

§ This constrained quadratic optimization problem can be solved via active set or
interior point methods

§ A popular method for NMF is based on multiplicative updates, which results in
an easy-to-compute alternating update rule



Generalized Tensor Decomposition
§ Aside from addition of constraints, the objective function may be modified by

using different elementwise loss functions
§ The standard loss function is px´mq2 where x is an element of the tensor and
m is its approximation via CP

§ For count data, the Poisson loss function m´ x logpmq may be more
appropriate, and typically comes along with nonnegativity constraints

§ Other distributions and loss functions of interest include Gamma, Rayleigh,
Bernoulli, and NegBinom (see D. Hong, T. Kolda, J. Duersch SIAM Review 2020)

§ Some loss function admit ALS-like algorithms, while others may require
gradient-based optimization

§ Can compute (sub-)gradients given any loss function, by differentiating as
necessary

§ For Poisson, like for the standard loss function, ALS subproblems may be solved
explicitly, allowing more robust convergence
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