CS 598 EVS: Tensor Computations Tensor Eigenvalues

Edgar Solomonik

University of Illinois, Urbana-Champaign

Matrix Eigenvalues

• The eigenvalue and singular value decompositions of matrices enable not only low-rank approximation (which we can get for tensors via decomposition), but also describe important properties of the matrix M and associated linear function $f^{(M)}(x) = Mx$

Tensor Eigenvalues

• Tensor eigenvalues and singular values can be defined based on the function $f^{(T)}$ by analogy from the role of matrix eigenvalues on $f^{(M)}$

Matrix Eigenvalues and Critical Points

The eigenvalues/eigenvectors of a matrix are the critical values/points of its Rayleigh quotient¹

Singular vectors and singular values of matrices may be derived analogously

¹Lek-Heng Lim, "Singular Values and Eigenvalues of Tensors: A Variational Approach", 2005

Tensors Eigenvalues

The Lagrangian approach to matrix eigenvalues generalizes naturally to symmetric tensors

Tensor Singular Values and Singular Vectors

Tensor singular values again can be viewed as critical points of the Lagrangian function of the multilinear map given by a tensor

Immediate Properties of Tensor Eigenvectors and Singular Vectors

▶ When the tensor order *d* is odd, *H*-eigenvectors (*l*^{*d*}-eigenvectors) and singular vectors must be defined with additional care

The largest tensor singular value is the operator/spectral norm of the tensor

Eigenvalues of Nonsymmetric Tensors

For nonsymmetric matrices case, the Lagrangian approach used above cannot be used to describe the eigenvalues

Connection Between Decomposition and Eigenvalues

 In the matrix-case, the largest magnitude eigenvalue and singular value may be associated with a rank-1 term that gives the best rank-1 decomposition of a matrix

In the tensor case, the rank-1 approximation problem corresponds to a maximization problem²

²L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank- $(R_1, R_2, ..., R_n)$ approximation of higher-order tensors", 2000

Derivation of Equivalence

The singular value problem can be derived from decomposition via the method of Lagrange multipliers

Hardness of Eigenvalue Computation

 Like rank-1 approximation, computing eigenvalues of singular values of a tensor is NP-hard, which can be demonstrated by considering the tensor bilinear feasibility problem³

³C.J. Hillar and L.-H. Lim, "Most tensor problems are NP-hard", 2013

Hardness of Eigenvalue Computation

 NP-hardness of the tensor bilinear feasibility problem can be demonstrated by reduction from 3-colorability

Power Method for Singular Value Computation

The high-order power method (HOPM) can be used to compute the largest singular value⁴

⁴L. De Lathauwer, B. De Moor, and J. Vandewalle, "On the best rank-1 and rank-(R_1 , R_2 ,..., R_n) approximation of higher-order tensors", 2000

Power Method for Symmetric Eigenvalue Problems

The HOPM algorithm can be adapted to symmetric tensors

Perron-Frobenius Theorem for Tensor Eigenvalues

The Perron-Frobenius theorem states that positive matrices have a unique real eigenvalue and the associated eigenvector is positive

Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem

Tensor Eigenvalues and Hypergraphs

Matrix eigenvalues are prominent in algebraic graph theory

Tensor eigenvalues can be used to understand partitioning/clustering properties of uniform hypergraphs⁵

⁵ J. Chang, Y. Chen, L. Qi, H. Yan, "Hypergraph Clustering Using a New Laplacian Tensor with Applications in Image Processing", 2019