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Matrix Eigenvalues
§ The eigenvalue and singular value decompositions of matrices enable not

only low-rank approximation (which we can get for tensors via
decomposition), but also describe important properties of the matrix M and
associated linear function f pMqpxq “ Mx



Tensor Eigenvalues
§ Tensor eigenvalues and singular values can be defined based on the function
f pT q by analogy from the role of matrix eigenvalues on f pMq



Matrix Eigenvalues and Critical Points
§ The eigenvalues/eigenvectors of a matrix are the critical values/points of its

Rayleigh quotient1

§ Singular vectors and singular values of matrices may be derived analogously

1Lek-Heng Lim, “Singular Values and Eigenvalues of Tensors: A Variational Approach”, 2005



Tensors Eigenvalues
§ The Lagrangian approach to matrix eigenvalues generalizes naturally to

symmetric tensors



Tensor Singular Values and Singular Vectors
§ Tensor singular values again can be viewed as critical points of the

Lagrangian function of the multilinear map given by a tensor



Immediate Properties of Tensor Eigenvectors and Singular Vectors
§ When the tensor order d is odd, H-eigenvectors (ld-eigenvectors) and

singular vectors must be defined with additional care

§ The largest tensor singular value is the operator/spectral norm of the tensor



Eigenvalues of Nonsymmetric Tensors
§ For nonsymmetric matrices case, the Lagrangian approach used above

cannot be used to describe the eigenvalues



Connection Between Decomposition and Eigenvalues
§ In the matrix-case, the largest magnitude eigenvalue and singular value may

be associated with a rank-1 term that gives the best rank-1 decomposition
of a matrix

§ In the tensor case, the rank-1 approximation problem corresponds to a
maximization problem2

2L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors”, 2000



Derivation of Equivalence
§ The singular value problem can be derived from decomposition via the

method of Lagrange multipliers



Hardness of Eigenvalue Computation
§ Like rank-1 approximation, computing eigenvalues of singular values of a

tensor is NP-hard, which can be demonstrated by considering the tensor
bilinear feasibility problem3

3C.J. Hillar and L.-H. Lim, “Most tensor problems are NP-hard”, 2013



Hardness of Eigenvalue Computation
§ NP-hardness of the tensor bilinear feasibility problem can be demonstrated

by reduction from 3-colorability



Power Method for Singular Value Computation
§ The high-order power method (HOPM) can be used to compute the largest

singular value4

4L. De Lathauwer, B. De Moor, and J. Vandewalle, “On the best rank-1 and rank-(R1, R2,..., Rn)
approximation of higher-order tensors”, 2000



Power Method for Symmetric Eigenvalue Problems
§ The HOPM algorithm can be adapted to symmetric tensors



Perron-Frobenius Theorem for Tensor Eigenvalues
§ The Perron-Frobenius theorem states that positive matrices have a unique

real eigenvalue and the associated eigenvector is positive

§ Tensor eigenvalues satisfy a generalized Perron-Frobenius theorem



Tensor Eigenvalues and Hypergraphs
§ Matrix eigenvalues are prominent in algebraic graph theory

§ Tensor eigenvalues can be used to understand partitioning/clustering
properties of uniform hypergraphs5

5J. Chang, Y. Chen, L. Qi, H. Yan, ”Hypergraph Clustering Using a New Laplacian Tensor with
Applications in Image Processing”, 2019
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