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Tensors

A tensor is a collection of elements
§ its dimensions define the size of the collection
§ its order is the number of different dimensions
§ specifying an index along each tensor mode defines

an element of the tensor

A few examples of tensors are
§ Order 0 tensors are scalars, e.g., s P R
§ Order 1 tensors are vectors, e.g., v P Rn

§ Order 2 tensors are matrices, e.g., A P Rmˆn

§ An order 3 tensor with dimensions s1 ˆ s2 ˆ s3 is denoted as T P Rs1ˆs2ˆs3

with elements tijk for i P t1, . . . , s1u, j P t1, . . . , s2u, k P t1, . . . , s3u



Reshaping Tensors

Its often helpful to use alternative views of the same collection of elements
§ Folding a tensor yields a higher-order tensor with the same elements
§ Unfolding a tensor yields a lower-order tensor with the same elements
§ In linear algebra, we have the unfolding v “ vecpAq, which stacks the

columns of A P Rmˆn to produce v P Rmn

§ For a tensor T P Rs1ˆs2ˆs3 , v “ vecpT q gives v P Rs1s2s3 with

vi`pj´1qs1`pk´1qs1s2 “ tijk

§ A common set of unfoldings is given by matricizations of a tensor, e.g., for
order 3,

Tp1q P Rs1ˆs2s3 ,Tp2q P Rs2ˆs1s3 , and Tp3q P Rs3ˆs1s2



Tensor Contractions
A tensor contraction multiplies two tensors to produce a third

§ Examples: inner product, outer product, tensor product, Hadamard
(elementwise) product, matrix multiplication

§ One higher order example is tensor-times-matrix (TTM), e.g.,

tijkl “
ÿ

q

uijqlvqk

§ A common contraction between two high order tensors is

tabij “
ÿ

p,q

uapiqvpbqj

§ Tensor contractions can be reduced to products of matrices and/or vectors
by transposing modes and matricizing both operands, then folding and
transposing the product



Tensor Decompositions
Tensor decompositions express a tensor as a contraction of factors

§ Canonical polyadic (CP) decomposition, factors are three matrices:

tijk “

R
ÿ

r“1

uirvjrwkr

§ Tucker decomposition, factors are three orthogonal matrices and a core tensor:

tijk “
ÿ

p,q,r

uipvjqwkrzpqr

§ Tensor train decomposition, factors are matrices or order 3 tensors:

ti1i2i3i4 “
ÿ

j1,j2,j3

ui1j1vj1i2j2wj2i3j3zj3i4



Applications of Tensor Decompositions

§ Tensor decompositions provide a mechanism for approximating tensor
datasets with a smaller number of degrees of freedom

§ polynomial improvements possible for high-dimensional models in electronic
structure calculations, plasma physics

§ exponential improvements are obtained for representing some quantum states

§ With imposition of constraints (e.g., nonnegativity or orthogonality), they
can be used for data mining tasks such as high-order clustering

§ in the presence of missing data, tensor decompositions may be used to
perform tensor completion

§ When the tensor represents an operator or mapping, tensor decompositions
can be used to find reduced structure

§ fast algorithms, such as FFT and Strassen’s matrix multiplication algorithm,
may be viewed as tensor decompositions



Tensor Decomposition Theory

§ Many basic decomposition/approximation problems are formally NP-hard
§ A considerable amount of theory focuses on CP decomposition and CP rank,

some will be surveyed in this course
§ A few alternate notions of tensor eigenvalues and singular values exist, and

may be loosely tied to decompositions
§ Stability and conditioning results exist for the tensor as an operator and CP

decomposition as a problem

decomposition CP Tucker tensor train
size dnR dnR ` Rd 2nR ` pd ´ 2qnR2

uniqueness if R ď p3n ´ 2q{2 no no
orthogonalizability none partial partial

exact decomposition NP hard Opnd`1q Opnd`1q

approximation NP hard NP hard NP hard



Tensor Decomposition Algorithms
§ Approximation with tensor decomposition is generally formulated as a

nonlinear least squares (NLS) problem
§ Optimization methods usually involve successive quadratic approximation

(Newton-based methods) as opposed to gradient-based methods
§ Alternating least squares (ALS) decouples nonlinear problem into

subproblems on subsets of variables that are quadratic and solves each in
an alternating manner

§ Other optimization methods, such as interior point and ADMM, are often
employed in the presence of constraints

§ Riemannian methods offer advantages in stability and covergence



Solvers for Tensor-Structured Linear Systems

§ Newton and ALS methods for tensor decomposition give rise to linear
subproblems

§ The matrices and right-hand sides composing these linear systems have
structure (e.g., formed by Kronecker products or sparse)

§ The course reviews a few techniques for approximate linear solvers for such
systems of equations

§ In particular, randomized sketching and its application to tensors will be
covered



Tensor Networks

§ Tensor network methods take as input a tensor that is already decomposed
§ Goal is generally to learn something about an operator described by a

tensor network
§ Often want to compute extremal eigenpairs of matrix M a tensor folding of

which T is described by the tensor network, e.g.,

M “ A b B ` C b D

§ Unknowns, e.g., eigenvectors in eigenproblem above, often also represented
implicitly by a tensor decomposition

§ These methods are prevalent for numerical simulation of PDEs and quantum
systems

§ In these context, tensor networks are also effective for time-dependent
problems



Tensor Network Theory and Algorithms
§ Different classes of functions have low rank with respect to different tensor

networks
§ 1D and 2D tensor networks are most widely used for quantum systems
§ Successive (alternating) quadratic optimization also widely used for tensor

networks
§ Canonical forms propagate orthogonality conditions to ensure stability
§ Naive contraction of 2D tensor networks has exponential cost, various

approximate algorithms exist
§ Other tensor networks trade-off connectivity and contractibility



Tensor Eigenvalues
§ Tensor eigenvalues and singular values describe critical points of the
N-variate function described by an order N tensor

fpu, v, wq “
ÿ

i,j,k

tijkuivjwk

§ Unlike matrices, correspondence between eigenvalues and decomposition is
known only for rank-1 decomposition

§ We review known theoretical results for tensor eigenvalue problems,
including Perron and Fiedler vectors (relevant for nonnegative tensors and
hypergraphs, respectively)



Software Systems for Tensors

§ The many parameters involved in tensor computations pose challenges for
practical implementation and numerical libraries

§ The course reviews research on algorithms and systems in this domain,
considering issues such as

§ handling tensor sparsity in tensor contraction, contraction of many tensors,
and tensor decomposition

§ parallelization of tensor primitive operations
§ symmetry and group-symmetry in tensors
§ state-of-practice in interfaces, numerical libraries, compilers, and computer

architecture


	Tensor Algebra

